提交 8cf54a47 编写于 作者: C chenguowei01

update xception_deeplab and mobilenetv3 to 2.0 beta

上级 f7e5320e
_base_: '../_base_/cityscapes.yml'
model:
type: DeepLabV3
backbone:
type: MobileNetV3_small_x1_0
pretrained: Null
num_classes: 19
pretrained: Null
backbone_indices: [0, 3]
optimizer:
weight_decay: 0.00004
_base_: '../_base_/cityscapes.yml'
model:
type: DeepLabV3
backbone:
type: Xception65_deeplab
pretrained: Null
num_classes: 19
pretrained: Null
backbone_indices: [0, 1]
optimizer:
weight_decay: 0.00004
......@@ -21,13 +21,14 @@ import os
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, AdaptiveAvgPool2d
from paddle.nn import SyncBatchNorm as BatchNorm
from paddle.regularizer import L2Decay
from paddle import ParamAttr
from paddleseg.models.common import layer_libs
from paddleseg.models.common import layer_libs, activation
from paddleseg.cvlibs import manager
from paddleseg.utils import utils
......@@ -71,9 +72,9 @@ def get_padding_same(kernel_size, dilation_rate):
return padding_same
class MobileNetV3(fluid.dygraph.Layer):
class MobileNetV3(nn.Layer):
def __init__(self,
backbone_pretrained=None,
pretrained=None,
scale=1.0,
model_name="small",
class_dim=1000,
......@@ -103,6 +104,9 @@ class MobileNetV3(fluid.dygraph.Layer):
1], # output 3 -> out_index=14
]
self.out_indices = [2, 5, 11, 14]
self.feat_channels = [
make_divisible(i * scale) for i in [24, 40, 112, 160]
]
self.cls_ch_squeeze = 960
self.cls_ch_expand = 1280
......@@ -122,6 +126,9 @@ class MobileNetV3(fluid.dygraph.Layer):
[5, 576, 96, True, "hard_swish", 1], # output 4 -> out_index=10
]
self.out_indices = [0, 3, 7, 10]
self.feat_channels = [
make_divisible(i * scale) for i in [16, 24, 48, 96]
]
self.cls_ch_squeeze = 576
self.cls_ch_expand = 1280
......@@ -169,37 +176,33 @@ class MobileNetV3(fluid.dygraph.Layer):
sublayer=self.block_list[-1], name="conv" + str(i + 2))
inplanes = make_divisible(scale * c)
self.last_second_conv = ConvBNLayer(
in_c=inplanes,
out_c=make_divisible(scale * self.cls_ch_squeeze),
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
act="hard_swish",
name="conv_last")
self.pool = Pool2D(
pool_type="avg", global_pooling=True, use_cudnn=False)
self.last_conv = Conv2D(
num_channels=make_divisible(scale * self.cls_ch_squeeze),
num_filters=self.cls_ch_expand,
filter_size=1,
stride=1,
padding=0,
act=None,
param_attr=ParamAttr(name="last_1x1_conv_weights"),
bias_attr=False)
self.out = Linear(
input_dim=self.cls_ch_expand,
output_dim=class_dim,
param_attr=ParamAttr("fc_weights"),
bias_attr=ParamAttr(name="fc_offset"))
self.init_weight(backbone_pretrained)
# self.last_second_conv = ConvBNLayer(
# in_c=inplanes,
# out_c=make_divisible(scale * self.cls_ch_squeeze),
# filter_size=1,
# stride=1,
# padding=0,
# num_groups=1,
# if_act=True,
# act="hard_swish",
# name="conv_last")
# self.pool = Pool2D(
# pool_type="avg", global_pooling=True, use_cudnn=False)
# self.last_conv = Conv2d(
# in_channels=make_divisible(scale * self.cls_ch_squeeze),
# out_channels=self.cls_ch_expand,
# kernel_size=1,
# stride=1,
# padding=0,
# bias_attr=False)
# self.out = Linear(
# input_dim=self.cls_ch_expand,
# output_dim=class_dim)
utils.load_pretrained_model(self, pretrained)
def modify_bottle_params(self, output_stride=None):
......@@ -216,7 +219,7 @@ class MobileNetV3(fluid.dygraph.Layer):
self.dilation_cfg[i] = rate
def forward(self, inputs, label=None, dropout_prob=0.2):
def forward(self, inputs, label=None):
x = self.conv1(inputs)
# A feature list saves each downsampling feature.
feat_list = []
......@@ -225,31 +228,18 @@ class MobileNetV3(fluid.dygraph.Layer):
if i in self.out_indices:
feat_list.append(x)
#print("block {}:".format(i),x.shape, self.dilation_cfg[i])
x = self.last_second_conv(x)
x = self.pool(x)
x = self.last_conv(x)
x = fluid.layers.hard_swish(x)
x = fluid.layers.dropout(x=x, dropout_prob=dropout_prob)
x = fluid.layers.reshape(x, shape=[x.shape[0], x.shape[1]])
x = self.out(x)
# x = self.last_second_conv(x)
# x = self.pool(x)
# x = self.last_conv(x)
# x = F.hard_swish(x)
# x = F.dropout(x=x, dropout_prob=dropout_prob)
# x = paddle.reshape(x, shape=[x.shape[0], x.shape[1]])
# x = self.out(x)
return x, feat_list
def init_weight(self, pretrained_model=None):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if pretrained_model is not None:
if os.path.exists(pretrained_model):
utils.load_pretrained_model(self, pretrained_model)
else:
raise Exception('Pretrained model is not found: {}'.format(
pretrained_model))
return feat_list
class ConvBNLayer(fluid.dygraph.Layer):
class ConvBNLayer(nn.Layer):
def __init__(self,
in_c,
out_c,
......@@ -266,46 +256,31 @@ class ConvBNLayer(fluid.dygraph.Layer):
self.if_act = if_act
self.act = act
self.conv = fluid.dygraph.Conv2D(
num_channels=in_c,
num_filters=out_c,
filter_size=filter_size,
self.conv = Conv2d(
in_channels=in_c,
out_channels=out_c,
kernel_size=filter_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=num_groups,
param_attr=ParamAttr(name=name + "_weights"),
bias_attr=False,
use_cudnn=use_cudnn,
act=None)
bias_attr=False)
self.bn = BatchNorm(
num_features=out_c,
weight_attr=ParamAttr(
name=name + "_bn_scale",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name=name + "_bn_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)))
weight_attr=ParamAttr(regularizer=L2Decay(0.0)),
bias_attr=ParamAttr(regularizer=L2Decay(0.0)))
self._act_op = layer_utils.Activation(act=None)
self._act_op = activation.Activation(act=None)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
if self.if_act:
if self.act == "relu":
x = fluid.layers.relu(x)
elif self.act == "hard_swish":
x = fluid.layers.hard_swish(x)
else:
print("The activation function is selected incorrectly.")
exit()
x = self._act_op(x)
return x
class ResidualUnit(fluid.dygraph.Layer):
class ResidualUnit(nn.Layer):
def __init__(self,
in_c,
mid_c,
......@@ -363,40 +338,34 @@ class ResidualUnit(fluid.dygraph.Layer):
x = self.mid_se(x)
x = self.linear_conv(x)
if self.if_shortcut:
x = fluid.layers.elementwise_add(inputs, x)
x = inputs + x
return x
class SEModule(fluid.dygraph.Layer):
class SEModule(nn.Layer):
def __init__(self, channel, reduction=4, name=""):
super(SEModule, self).__init__()
self.avg_pool = fluid.dygraph.Pool2D(
pool_type="avg", global_pooling=True, use_cudnn=False)
self.conv1 = fluid.dygraph.Conv2D(
num_channels=channel,
num_filters=channel // reduction,
filter_size=1,
self.avg_pool = AdaptiveAvgPool2d(1)
self.conv1 = Conv2d(
in_channels=channel,
out_channels=channel // reduction,
kernel_size=1,
stride=1,
padding=0,
act="relu",
param_attr=ParamAttr(name=name + "_1_weights"),
bias_attr=ParamAttr(name=name + "_1_offset"))
self.conv2 = fluid.dygraph.Conv2D(
num_channels=channel // reduction,
num_filters=channel,
filter_size=1,
padding=0)
self.conv2 = Conv2d(
in_channels=channel // reduction,
out_channels=channel,
kernel_size=1,
stride=1,
padding=0,
act=None,
param_attr=ParamAttr(name + "_2_weights"),
bias_attr=ParamAttr(name=name + "_2_offset"))
padding=0)
def forward(self, inputs):
outputs = self.avg_pool(inputs)
outputs = self.conv1(outputs)
outputs = F.relu(outputs)
outputs = self.conv2(outputs)
outputs = fluid.layers.hard_sigmoid(outputs)
return fluid.layers.elementwise_mul(x=inputs, y=outputs, axis=0)
outputs = F.hard_sigmoid(outputs)
return paddle.multiply(x=inputs, y=outputs, axis=0)
def MobileNetV3_small_x0_35(**kwargs):
......
......@@ -15,13 +15,12 @@
import os
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, Linear, Dropout
from paddle.nn import SyncBatchNorm as BatchNorm
from paddleseg.models.common import layer_libs
from paddleseg.models.common import layer_libs, activation
from paddleseg.cvlibs import manager
from paddleseg.utils import utils
......@@ -78,7 +77,7 @@ def gen_bottleneck_params(backbone='xception_65'):
return bottleneck_params
class ConvBNLayer(fluid.dygraph.Layer):
class ConvBNLayer(nn.Layer):
def __init__(self,
input_channels,
output_channels,
......@@ -89,29 +88,24 @@ class ConvBNLayer(fluid.dygraph.Layer):
name=None):
super(ConvBNLayer, self).__init__()
self._conv = Conv2D(
num_channels=input_channels,
num_filters=output_channels,
filter_size=filter_size,
self._conv = Conv2d(
in_channels=input_channels,
out_channels=output_channels,
kernel_size=filter_size,
stride=stride,
padding=padding,
param_attr=ParamAttr(name=name + "/weights"),
bias_attr=False)
self._bn = BatchNorm(
num_features=output_channels,
epsilon=1e-3,
momentum=0.99,
weight_attr=ParamAttr(name=name + "/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/BatchNorm/beta"))
num_features=output_channels, epsilon=1e-3, momentum=0.99)
self._act_op = layer_utils.Activation(act=act)
self._act_op = activation.Activation(act=act)
def forward(self, inputs):
return self._act_op(self._bn(self._conv(inputs)))
class Seperate_Conv(fluid.dygraph.Layer):
class Seperate_Conv(nn.Layer):
def __init__(self,
input_channels,
output_channels,
......@@ -122,42 +116,30 @@ class Seperate_Conv(fluid.dygraph.Layer):
name=None):
super(Seperate_Conv, self).__init__()
self._conv1 = Conv2D(
num_channels=input_channels,
num_filters=input_channels,
filter_size=filter,
self._conv1 = Conv2d(
in_channels=input_channels,
out_channels=input_channels,
kernel_size=filter,
stride=stride,
groups=input_channels,
padding=(filter) // 2 * dilation,
dilation=dilation,
param_attr=ParamAttr(name=name + "/depthwise/weights"),
bias_attr=False)
self._bn1 = BatchNorm(
input_channels,
epsilon=1e-3,
momentum=0.99,
weight_attr=ParamAttr(name=name + "/depthwise/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/depthwise/BatchNorm/beta"))
self._bn1 = BatchNorm(input_channels, epsilon=1e-3, momentum=0.99)
self._act_op1 = layer_utils.Activation(act=act)
self._act_op1 = activation.Activation(act=act)
self._conv2 = Conv2D(
self._conv2 = Conv2d(
input_channels,
output_channels,
1,
stride=1,
groups=1,
padding=0,
param_attr=ParamAttr(name=name + "/pointwise/weights"),
bias_attr=False)
self._bn2 = BatchNorm(
output_channels,
epsilon=1e-3,
momentum=0.99,
weight_attr=ParamAttr(name=name + "/pointwise/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/pointwise/BatchNorm/beta"))
self._bn2 = BatchNorm(output_channels, epsilon=1e-3, momentum=0.99)
self._act_op2 = layer_utils.Activation(act=act)
self._act_op2 = activation.Activation(act=act)
def forward(self, inputs):
x = self._conv1(inputs)
......@@ -169,7 +151,7 @@ class Seperate_Conv(fluid.dygraph.Layer):
return x
class Xception_Block(fluid.dygraph.Layer):
class Xception_Block(nn.Layer):
def __init__(self,
input_channels,
output_channels,
......@@ -248,13 +230,12 @@ class Xception_Block(fluid.dygraph.Layer):
name=name + "/shortcut")
def forward(self, inputs):
layer_helper = LayerHelper(self.full_name(), act='relu')
if not self.activation_fn_in_separable_conv:
x = layer_helper.append_activation(inputs)
x = F.relu(inputs)
x = self._conv1(x)
x = layer_helper.append_activation(x)
x = F.relu(x)
x = self._conv2(x)
x = layer_helper.append_activation(x)
x = F.relu(x)
x = self._conv3(x)
else:
x = self._conv1(inputs)
......@@ -266,16 +247,16 @@ class Xception_Block(fluid.dygraph.Layer):
skip = self._short(inputs)
else:
skip = inputs
return fluid.layers.elementwise_add(x, skip)
return x + skip
class XceptionDeeplab(fluid.dygraph.Layer):
class XceptionDeeplab(nn.Layer):
#def __init__(self, backbone, class_dim=1000):
# add output_stride
def __init__(self,
backbone,
backbone_pretrained=None,
pretrained=None,
output_stride=16,
class_dim=1000):
......@@ -283,6 +264,7 @@ class XceptionDeeplab(fluid.dygraph.Layer):
bottleneck_params = gen_bottleneck_params(backbone)
self.backbone = backbone
self.feat_channels = [128, 2048]
self._conv1 = ConvBNLayer(
3,
......@@ -388,19 +370,8 @@ class XceptionDeeplab(fluid.dygraph.Layer):
has_skip=False,
activation_fn_in_separable_conv=True,
name=self.backbone + "/exit_flow/block2")
s = s * stride
self.stride = s
self._drop = Dropout(p=0.5)
self._pool = Pool2D(pool_type="avg", global_pooling=True)
self._fc = Linear(
self.chns[1][-1],
class_dim,
param_attr=ParamAttr(name="fc_weights"),
bias_attr=ParamAttr(name="fc_bias"))
self.init_weight(backbone_pretrained)
utils.load_pretrained_model(self, pretrained)
def forward(self, inputs):
x = self._conv1(inputs)
......@@ -415,27 +386,10 @@ class XceptionDeeplab(fluid.dygraph.Layer):
x = self._exit_flow_1(x)
x = self._exit_flow_2(x)
feat_list.append(x)
x = self._drop(x)
x = self._pool(x)
x = fluid.layers.squeeze(x, axes=[2, 3])
x = self._fc(x)
return x, feat_list
def init_weight(self, pretrained_model=None):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if pretrained_model is not None:
if os.path.exists(pretrained_model):
utils.load_pretrained_model(self, pretrained_model)
else:
raise Exception('Pretrained model is not found: {}'.format(
pretrained_model))
return feat_list
@manager.BACKBONES.add_component
def Xception41_deeplab(**args):
model = XceptionDeeplab('xception_41', **args)
return model
......@@ -447,6 +401,7 @@ def Xception65_deeplab(**args):
return model
@manager.BACKBONES.add_component
def Xception71_deeplab(**args):
model = XceptionDeeplab("xception_71", **args)
return model
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册