未验证 提交 867d4a5b 编写于 作者: hbclc's avatar hbclc 提交者: GitHub

Read and use items of "use_pr" in deploy configuration files (deploy.yaml ) (#264)

Co-authored-by: N陈亮 <chenliang@daheng-image.com>
上级 e0a9f0c0
...@@ -29,7 +29,6 @@ from concurrent.futures import ThreadPoolExecutor, as_completed ...@@ -29,7 +29,6 @@ from concurrent.futures import ThreadPoolExecutor, as_completed
gflags.DEFINE_string("conf", default="", help="Configuration File Path") gflags.DEFINE_string("conf", default="", help="Configuration File Path")
gflags.DEFINE_string("input_dir", default="", help="Directory of Input Images") gflags.DEFINE_string("input_dir", default="", help="Directory of Input Images")
gflags.DEFINE_boolean("use_pr", default=False, help="Use optimized model")
gflags.DEFINE_string("trt_mode", default="", help="Use optimized model") gflags.DEFINE_string("trt_mode", default="", help="Use optimized model")
gflags.DEFINE_string( gflags.DEFINE_string(
"ext", default=".jpeg|.jpg", help="Input Image File Extensions") "ext", default=".jpeg|.jpg", help="Input Image File Extensions")
...@@ -104,6 +103,9 @@ class DeployConfig: ...@@ -104,6 +103,9 @@ class DeployConfig:
self.batch_size = deploy_conf["BATCH_SIZE"] self.batch_size = deploy_conf["BATCH_SIZE"]
# 9. channels # 9. channels
self.channels = deploy_conf["CHANNELS"] self.channels = deploy_conf["CHANNELS"]
# 10. use_pr
self.use_pr = deploy_conf["USE_PR"]
class ImageReader: class ImageReader:
...@@ -258,23 +260,24 @@ class Predictor: ...@@ -258,23 +260,24 @@ class Predictor:
# record starting time point # record starting time point
total_start = time.time() total_start = time.time()
batch_size = self.config.batch_size batch_size = self.config.batch_size
use_pr = self.config.use_pr
for i in range(0, len(images), batch_size): for i in range(0, len(images), batch_size):
real_batch_size = batch_size real_batch_size = batch_size
if i + batch_size >= len(images): if i + batch_size >= len(images):
real_batch_size = len(images) - i real_batch_size = len(images) - i
reader_start = time.time() reader_start = time.time()
img_datas = self.image_reader.process(images[i:i + real_batch_size], img_datas = self.image_reader.process(images[i:i + real_batch_size],
gflags.FLAGS.use_pr) use_pr)
input_data = np.concatenate([item[1] for item in img_datas]) input_data = np.concatenate([item[1] for item in img_datas])
input_data = self.create_tensor( input_data = self.create_tensor(
input_data, real_batch_size, use_pr=gflags.FLAGS.use_pr) input_data, real_batch_size, use_pr=use_pr)
reader_end = time.time() reader_end = time.time()
infer_start = time.time() infer_start = time.time()
output_data = self.predictor.run(input_data)[0] output_data = self.predictor.run(input_data)[0]
infer_end = time.time() infer_end = time.time()
output_data = output_data.as_ndarray() output_data = output_data.as_ndarray()
post_start = time.time() post_start = time.time()
self.output_result(img_datas, output_data, gflags.FLAGS.use_pr) self.output_result(img_datas, output_data, use_pr)
post_end = time.time() post_end = time.time()
reader_time += (reader_end - reader_start) reader_time += (reader_end - reader_start)
infer_time += (infer_end - infer_start) infer_time += (infer_end - infer_start)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册