提交 843e2a8b 编写于 作者: L LielinJiang 提交者: Zeyu Chen

Add Fast-SCNN model (#147)

* add fast scnn

* fix readme

* update model name, add inference time

* fix typos
上级 8f9b3893
...@@ -94,6 +94,7 @@ pip install -r requirements.txt ...@@ -94,6 +94,7 @@ pip install -r requirements.txt
* [ICNet模型使用教程](./turtorial/finetune_icnet.md) * [ICNet模型使用教程](./turtorial/finetune_icnet.md)
* [PSPNet模型使用教程](./turtorial/finetune_pspnet.md) * [PSPNet模型使用教程](./turtorial/finetune_pspnet.md)
* [HRNet模型使用教程](./turtorial/finetune_hrnet.md) * [HRNet模型使用教程](./turtorial/finetune_hrnet.md)
* [Fast-SCNN模型使用教程](./turtorial/finetune_fast_scnn.md)
### 预测部署 ### 预测部署
......
EVAL_CROP_SIZE: (2048, 1024) # (width, height), for unpadding rangescaling and stepscaling
TRAIN_CROP_SIZE: (1024, 1024) # (width, height), for unpadding rangescaling and stepscaling
AUG:
AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling
FIX_RESIZE_SIZE: (640, 640) # (width, height), for unpadding
INF_RESIZE_VALUE: 500 # for rangescaling
MAX_RESIZE_VALUE: 600 # for rangescaling
MIN_RESIZE_VALUE: 400 # for rangescaling
MAX_SCALE_FACTOR: 2.0 # for stepscaling
MIN_SCALE_FACTOR: 0.5 # for stepscaling
SCALE_STEP_SIZE: 0.25 # for stepscaling
MIRROR: True
FLIP: False
FLIP_RATIO: 0.2
RICH_CROP:
ENABLE: True
ASPECT_RATIO: 0.0
BLUR: False
BLUR_RATIO: 0.1
MAX_ROTATION: 0
MIN_AREA_RATIO: 0.0
BRIGHTNESS_JITTER_RATIO: 0.4
CONTRAST_JITTER_RATIO: 0.4
SATURATION_JITTER_RATIO: 0.4
BATCH_SIZE: 12
MEAN: [0.5, 0.5, 0.5]
STD: [0.5, 0.5, 0.5]
DATASET:
DATA_DIR: "./dataset/cityscapes/"
IMAGE_TYPE: "rgb" # choice rgb or rgba
NUM_CLASSES: 19
TEST_FILE_LIST: "dataset/cityscapes/val.list"
TRAIN_FILE_LIST: "dataset/cityscapes/train.list"
VAL_FILE_LIST: "dataset/cityscapes/val.list"
IGNORE_INDEX: 255
FREEZE:
MODEL_FILENAME: "model"
PARAMS_FILENAME: "params"
MODEL:
DEFAULT_NORM_TYPE: "bn"
MODEL_NAME: "fast_scnn"
TEST:
TEST_MODEL: "snapshots/cityscape_fast_scnn/final/"
TRAIN:
MODEL_SAVE_DIR: "snapshots/cityscape_fast_scnn/"
SNAPSHOT_EPOCH: 10
SOLVER:
LR: 0.001
LR_POLICY: "poly"
OPTIMIZER: "sgd"
NUM_EPOCHS: 100
TRAIN_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling
EVAL_CROP_SIZE: (512, 512) # (width, height), for unpadding rangescaling and stepscaling
AUG:
AUG_METHOD: "unpadding" # choice unpadding rangescaling and stepscaling
FIX_RESIZE_SIZE: (512, 512) # (width, height), for unpadding
INF_RESIZE_VALUE: 500 # for rangescaling
MAX_RESIZE_VALUE: 600 # for rangescaling
MIN_RESIZE_VALUE: 400 # for rangescaling
MAX_SCALE_FACTOR: 1.25 # for stepscaling
MIN_SCALE_FACTOR: 0.75 # for stepscaling
SCALE_STEP_SIZE: 0.25 # for stepscaling
MIRROR: True
BATCH_SIZE: 4
DATASET:
DATA_DIR: "./dataset/mini_pet/"
IMAGE_TYPE: "rgb" # choice rgb or rgba
NUM_CLASSES: 3
TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt"
VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt"
VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
IGNORE_INDEX: 255
SEPARATOR: " "
FREEZE:
MODEL_FILENAME: "__model__"
PARAMS_FILENAME: "__params__"
MODEL:
MODEL_NAME: "fast_scnn"
DEFAULT_NORM_TYPE: "bn"
TRAIN:
PRETRAINED_MODEL_DIR: "./pretrained_model/fast_scnn_cityscape/"
MODEL_SAVE_DIR: "./saved_model/fast_scnn_pet/"
SNAPSHOT_EPOCH: 10
TEST:
TEST_MODEL: "./saved_model/fast_scnn_pet/final"
SOLVER:
NUM_EPOCHS: 100
LR: 0.005
LR_POLICY: "poly"
OPTIMIZER: "sgd"
...@@ -63,3 +63,6 @@ train数据集合为Cityscapes训练集合,测试为Cityscapes的验证集合 ...@@ -63,3 +63,6 @@ train数据集合为Cityscapes训练集合,测试为Cityscapes的验证集合
| PSPNet/bn | Cityscapes |[pspnet50_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet50_cityscapes.tgz) |16|false| 0.7013 | | PSPNet/bn | Cityscapes |[pspnet50_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet50_cityscapes.tgz) |16|false| 0.7013 |
| PSPNet/bn | Cityscapes |[pspnet101_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet101_cityscapes.tgz) |16|false| 0.7734 | | PSPNet/bn | Cityscapes |[pspnet101_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet101_cityscapes.tgz) |16|false| 0.7734 |
| HRNet_W18/bn | Cityscapes |[hrnet_w18_bn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz) | 4 | false | 0.7936 | | HRNet_W18/bn | Cityscapes |[hrnet_w18_bn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz) | 4 | false | 0.7936 |
| Fast-SCNN/bn | Cityscapes |[fast_scnn_cityscapes.tar](https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar) | 32 | false | 0.6964 |
测试环境为python 3.7.3,v100,cudnn 7.6.2。
...@@ -71,6 +71,7 @@ def softmax_with_loss(logit, label, ignore_mask=None, num_classes=2, weight=None ...@@ -71,6 +71,7 @@ def softmax_with_loss(logit, label, ignore_mask=None, num_classes=2, weight=None
ignore_mask.stop_gradient = True ignore_mask.stop_gradient = True
return avg_loss return avg_loss
# to change, how to appicate ignore index and ignore mask # to change, how to appicate ignore index and ignore mask
def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001): def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001):
if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1: if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
...@@ -93,6 +94,7 @@ def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001): ...@@ -93,6 +94,7 @@ def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001):
ignore_mask.stop_gradient = True ignore_mask.stop_gradient = True
return fluid.layers.reduce_mean(dice_score) return fluid.layers.reduce_mean(dice_score)
def bce_loss(logit, label, ignore_mask=None): def bce_loss(logit, label, ignore_mask=None):
if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1: if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
raise Exception("bce loss is only applicable to binary classfication") raise Exception("bce loss is only applicable to binary classfication")
...@@ -112,16 +114,18 @@ def multi_softmax_with_loss(logits, label, ignore_mask=None, num_classes=2, weig ...@@ -112,16 +114,18 @@ def multi_softmax_with_loss(logits, label, ignore_mask=None, num_classes=2, weig
if isinstance(logits, tuple): if isinstance(logits, tuple):
avg_loss = 0 avg_loss = 0
for i, logit in enumerate(logits): for i, logit in enumerate(logits):
logit_label = fluid.layers.resize_nearest(label, logit.shape[2:]) if label.shape[2] != logit.shape[2] or label.shape[3] != logit.shape[3]:
logit_mask = (logit_label.astype('int32') != label = fluid.layers.resize_nearest(label, logit.shape[2:])
logit_mask = (label.astype('int32') !=
cfg.DATASET.IGNORE_INDEX).astype('int32') cfg.DATASET.IGNORE_INDEX).astype('int32')
loss = softmax_with_loss(logit, logit_label, logit_mask, loss = softmax_with_loss(logit, label, logit_mask,
num_classes) num_classes)
avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss avg_loss += cfg.MODEL.MULTI_LOSS_WEIGHT[i] * loss
else: else:
avg_loss = softmax_with_loss(logits, label, ignore_mask, num_classes, weight=weight) avg_loss = softmax_with_loss(logits, label, ignore_mask, num_classes, weight=weight)
return avg_loss return avg_loss
def multi_dice_loss(logits, label, ignore_mask=None): def multi_dice_loss(logits, label, ignore_mask=None):
if isinstance(logits, tuple): if isinstance(logits, tuple):
avg_loss = 0 avg_loss = 0
...@@ -135,6 +139,7 @@ def multi_dice_loss(logits, label, ignore_mask=None): ...@@ -135,6 +139,7 @@ def multi_dice_loss(logits, label, ignore_mask=None):
avg_loss = dice_loss(logits, label, ignore_mask) avg_loss = dice_loss(logits, label, ignore_mask)
return avg_loss return avg_loss
def multi_bce_loss(logits, label, ignore_mask=None): def multi_bce_loss(logits, label, ignore_mask=None):
if isinstance(logits, tuple): if isinstance(logits, tuple):
avg_loss = 0 avg_loss = 0
......
...@@ -164,3 +164,37 @@ def separate_conv(input, channel, stride, filter, dilation=1, act=None): ...@@ -164,3 +164,37 @@ def separate_conv(input, channel, stride, filter, dilation=1, act=None):
input = bn(input) input = bn(input)
if act: input = act(input) if act: input = act(input)
return input return input
def conv_bn_layer(input,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
if_act=True,
name=None,
use_cudnn=True):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=fluid.ParamAttr(name=name + '_weights'),
bias_attr=False)
bn_name = name + '_bn'
bn = fluid.layers.batch_norm(
input=conv,
param_attr=fluid.ParamAttr(name=bn_name + "_scale"),
bias_attr=fluid.ParamAttr(name=bn_name + "_offset"),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
if if_act:
return fluid.layers.relu6(bn)
else:
return bn
\ No newline at end of file
...@@ -24,7 +24,7 @@ from utils.config import cfg ...@@ -24,7 +24,7 @@ from utils.config import cfg
from loss import multi_softmax_with_loss from loss import multi_softmax_with_loss
from loss import multi_dice_loss from loss import multi_dice_loss
from loss import multi_bce_loss from loss import multi_bce_loss
from models.modeling import deeplab, unet, icnet, pspnet, hrnet from models.modeling import deeplab, unet, icnet, pspnet, hrnet, fast_scnn
class ModelPhase(object): class ModelPhase(object):
...@@ -81,6 +81,8 @@ def seg_model(image, class_num): ...@@ -81,6 +81,8 @@ def seg_model(image, class_num):
logits = pspnet.pspnet(image, class_num) logits = pspnet.pspnet(image, class_num)
elif model_name == 'hrnet': elif model_name == 'hrnet':
logits = hrnet.hrnet(image, class_num) logits = hrnet.hrnet(image, class_num)
elif model_name == 'fast_scnn':
logits = fast_scnn.fast_scnn(image, class_num)
else: else:
raise Exception( raise Exception(
"unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet" "unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet"
......
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.fluid as fluid
from models.libs.model_libs import scope
from models.libs.model_libs import bn, bn_relu, relu, conv_bn_layer
from models.libs.model_libs import conv, avg_pool
from models.libs.model_libs import separate_conv
from utils.config import cfg
def learning_to_downsample(x, dw_channels1=32, dw_channels2=48, out_channels=64):
x = relu(bn(conv(x, dw_channels1, 3, 2)))
with scope('dsconv1'):
x = separate_conv(x, dw_channels2, stride=2, filter=3, act=fluid.layers.relu)
with scope('dsconv2'):
x = separate_conv(x, out_channels, stride=2, filter=3, act=fluid.layers.relu)
return x
def shortcut(input, data_residual):
return fluid.layers.elementwise_add(input, data_residual)
def dropout2d(input, prob, is_train=False):
if not is_train:
return input
channels = input.shape[1]
keep_prob = 1.0 - prob
random_tensor = keep_prob + fluid.layers.uniform_random_batch_size_like(input, [-1, channels, 1, 1], min=0., max=1.)
binary_tensor = fluid.layers.floor(random_tensor)
output = input / keep_prob * binary_tensor
return output
def inverted_residual_unit(input,
num_in_filter,
num_filters,
ifshortcut,
stride,
filter_size,
padding,
expansion_factor,
name=None):
num_expfilter = int(round(num_in_filter * expansion_factor))
channel_expand = conv_bn_layer(
input=input,
num_filters=num_expfilter,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=True,
name=name + '_expand')
bottleneck_conv = conv_bn_layer(
input=channel_expand,
num_filters=num_expfilter,
filter_size=filter_size,
stride=stride,
padding=padding,
num_groups=num_expfilter,
if_act=True,
name=name + '_dwise',
use_cudnn=False)
depthwise_output = bottleneck_conv
linear_out = conv_bn_layer(
input=bottleneck_conv,
num_filters=num_filters,
filter_size=1,
stride=1,
padding=0,
num_groups=1,
if_act=False,
name=name + '_linear')
if ifshortcut:
out = shortcut(input=input, data_residual=linear_out)
return out, depthwise_output
else:
return linear_out, depthwise_output
def inverted_blocks(input, in_c, t, c, n, s, name=None):
first_block, depthwise_output = inverted_residual_unit(
input=input,
num_in_filter=in_c,
num_filters=c,
ifshortcut=False,
stride=s,
filter_size=3,
padding=1,
expansion_factor=t,
name=name + '_1')
last_residual_block = first_block
last_c = c
for i in range(1, n):
last_residual_block, depthwise_output = inverted_residual_unit(
input=last_residual_block,
num_in_filter=last_c,
num_filters=c,
ifshortcut=True,
stride=1,
filter_size=3,
padding=1,
expansion_factor=t,
name=name + '_' + str(i + 1))
return last_residual_block, depthwise_output
def psp_module(input, out_features):
cat_layers = []
sizes = (1, 2, 3, 6)
for size in sizes:
psp_name = "psp" + str(size)
with scope(psp_name):
pool = fluid.layers.adaptive_pool2d(input,
pool_size=[size, size],
pool_type='avg',
name=psp_name + '_adapool')
data = conv(pool, out_features,
filter_size=1,
bias_attr=False,
name=psp_name + '_conv')
data_bn = bn(data, act='relu')
interp = fluid.layers.resize_bilinear(data_bn,
out_shape=input.shape[2:],
name=psp_name + '_interp', align_mode=0)
cat_layers.append(interp)
cat_layers = [input] + cat_layers
out = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')
return out
class FeatureFusionModule:
"""Feature fusion module"""
def __init__(self, higher_in_channels, lower_in_channels, out_channels, scale_factor=4):
self.higher_in_channels = higher_in_channels
self.lower_in_channels = lower_in_channels
self.out_channels = out_channels
self.scale_factor = scale_factor
def net(self, higher_res_feature, lower_res_feature):
h, w = higher_res_feature.shape[2:]
lower_res_feature = fluid.layers.resize_bilinear(lower_res_feature, [h, w], align_mode=0)
with scope('dwconv'):
lower_res_feature = relu(bn(conv(lower_res_feature, self.out_channels, 1)))#(lower_res_feature)
with scope('conv_lower_res'):
lower_res_feature = bn(conv(lower_res_feature, self.out_channels, 1, bias_attr=True))
with scope('conv_higher_res'):
higher_res_feature = bn(conv(higher_res_feature, self.out_channels, 1, bias_attr=True))
out = higher_res_feature + lower_res_feature
return relu(out)
class GlobalFeatureExtractor():
"""Global feature extractor module"""
def __init__(self, in_channels=64, block_channels=(64, 96, 128), out_channels=128,
t=6, num_blocks=(3, 3, 3)):
self.in_channels = in_channels
self.block_channels = block_channels
self.out_channels = out_channels
self.t = t
self.num_blocks = num_blocks
def net(self, x):
x, _ = inverted_blocks(x, self.in_channels, self.t, self.block_channels[0],
self.num_blocks[0], 2, 'inverted_block_1')
x, _ = inverted_blocks(x, self.block_channels[0], self.t, self.block_channels[1],
self.num_blocks[1], 2, 'inverted_block_2')
x, _ = inverted_blocks(x, self.block_channels[1], self.t, self.block_channels[2],
self.num_blocks[2], 1, 'inverted_block_3')
x = psp_module(x, self.block_channels[2] // 4)
with scope('out'):
x = relu(bn(conv(x, self.out_channels, 1)))
return x
class Classifier:
"""Classifier"""
def __init__(self, dw_channels, num_classes, stride=1):
self.dw_channels = dw_channels
self.num_classes = num_classes
self.stride = stride
def net(self, x):
with scope('dsconv1'):
x = separate_conv(x, self.dw_channels, stride=self.stride, filter=3, act=fluid.layers.relu)
with scope('dsconv2'):
x = separate_conv(x, self.dw_channels, stride=self.stride, filter=3, act=fluid.layers.relu)
x = dropout2d(x, 0.1, is_train=cfg.PHASE=='train')
x = conv(x, self.num_classes, 1, bias_attr=True)
return x
def aux_layer(x, num_classes):
x = relu(bn(conv(x, 32, 3, padding=1)))
x = dropout2d(x, 0.1, is_train=(cfg.PHASE == 'train'))
with scope('logit'):
x = conv(x, num_classes, 1, bias_attr=True)
return x
def fast_scnn(img, num_classes):
size = img.shape[2:]
classifier = Classifier(128, num_classes)
global_feature_extractor = GlobalFeatureExtractor(64, [64, 96, 128], 128, 6, [3, 3, 3])
feature_fusion = FeatureFusionModule(64, 128, 128)
with scope('learning_to_downsample'):
higher_res_features = learning_to_downsample(img, 32, 48, 64)
with scope('global_feature_extractor'):
lower_res_feature = global_feature_extractor.net(higher_res_features)
with scope('feature_fusion'):
x = feature_fusion.net(higher_res_features, lower_res_feature)
with scope('classifier'):
logit = classifier.net(x)
logit = fluid.layers.resize_bilinear(logit, size, align_mode=0)
if len(cfg.MODEL.MULTI_LOSS_WEIGHT) == 3:
with scope('aux_layer_higher'):
higher_logit = aux_layer(higher_res_features, num_classes)
higher_logit = fluid.layers.resize_bilinear(higher_logit, size, align_mode=0)
with scope('aux_layer_lower'):
lower_logit = aux_layer(lower_res_feature, num_classes)
lower_logit = fluid.layers.resize_bilinear(lower_logit, size, align_mode=0)
return logit, higher_logit, lower_logit
elif len(cfg.MODEL.MULTI_LOSS_WEIGHT) == 2:
with scope('aux_layer_higher'):
higher_logit = aux_layer(higher_res_features, num_classes)
higher_logit = fluid.layers.resize_bilinear(higher_logit, size, align_mode=0)
return logit, higher_logit
return logit
\ No newline at end of file
...@@ -98,8 +98,8 @@ class SegDataset(object): ...@@ -98,8 +98,8 @@ class SegDataset(object):
# Re-shuffle file list # Re-shuffle file list
if self.shuffle and cfg.NUM_TRAINERS > 1: if self.shuffle and cfg.NUM_TRAINERS > 1:
np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines) np.random.RandomState(self.shuffle_seed).shuffle(self.all_lines)
num_lines = len(self.all_lines) // self.num_trainers num_lines = len(self.all_lines) // cfg.NUM_TRAINERS
self.lines = self.all_lines[num_lines * self.trainer_id: num_lines * (self.trainer_id + 1)] self.lines = self.all_lines[num_lines * cfg.TRAINER_ID: num_lines * (cfg.TRAINER_ID + 1)]
self.shuffle_seed += 1 self.shuffle_seed += 1
elif self.shuffle: elif self.shuffle:
np.random.shuffle(self.lines) np.random.shuffle(self.lines)
......
...@@ -81,6 +81,8 @@ model_urls = { ...@@ -81,6 +81,8 @@ model_urls = {
"https://paddleseg.bj.bcebos.com/models/pspnet101_cityscapes.tgz", "https://paddleseg.bj.bcebos.com/models/pspnet101_cityscapes.tgz",
"hrnet_w18_bn_cityscapes": "hrnet_w18_bn_cityscapes":
"https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz", "https://paddleseg.bj.bcebos.com/models/hrnet_w18_bn_cityscapes.tgz",
"fast_scnn_cityscapes":
"https://paddleseg.bj.bcebos.com/models/fast_scnn_cityscape.tar",
} }
if __name__ == "__main__": if __name__ == "__main__":
......
# Fast-SCNN模型训练教程
* 本教程旨在介绍如何通过使用PaddleSeg提供的 ***`Fast_scnn_cityscape`*** 预训练模型在自定义数据集上进行训练。
* 在阅读本教程前,请确保您已经了解过PaddleSeg的[快速入门](../README.md#快速入门)[基础功能](../README.md#基础功能)等章节,以便对PaddleSeg有一定的了解
* 本教程的所有命令都基于PaddleSeg主目录进行执行
## 一. 准备待训练数据
我们提前准备好了一份数据集,通过以下代码进行下载
```shell
python dataset/download_pet.py
```
## 二. 下载预训练模型
关于PaddleSeg支持的所有预训练模型的列表,我们可以从[模型组合](#模型组合)中查看我们所需模型的名字和配置
接着下载对应的预训练模型
```shell
python pretrained_model/download_model.py fast_scnn_cityscapes
```
## 三. 准备配置
接着我们需要确定相关配置,从本教程的角度,配置分为三部分:
* 数据集
* 训练集主目录
* 训练集文件列表
* 测试集文件列表
* 评估集文件列表
* 预训练模型
* 预训练模型名称
* 预训练模型的backbone网络
* 预训练模型的Normalization类型
* 预训练模型路径
* 其他
* 学习率
* Batch大小
* ...
在三者中,预训练模型的配置尤为重要,如果模型或者BACKBONE配置错误,会导致预训练的参数没有加载,进而影响收敛速度。预训练模型相关的配置如第二步所展示。
数据集的配置和数据路径有关,在本教程中,数据存放在`dataset/mini_pet`
其他配置则根据数据集和机器环境的情况进行调节,最终我们保存一个如下内容的yaml配置文件,存放路径为**configs/fast_scnn_pet.yaml**
```yaml
# 数据集配置
DATASET:
DATA_DIR: "./dataset/mini_pet/"
NUM_CLASSES: 3
TEST_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
TRAIN_FILE_LIST: "./dataset/mini_pet/file_list/train_list.txt"
VAL_FILE_LIST: "./dataset/mini_pet/file_list/val_list.txt"
VIS_FILE_LIST: "./dataset/mini_pet/file_list/test_list.txt"
# 预训练模型配置
MODEL:
MODEL_NAME: "fast_scnn"
DEFAULT_NORM_TYPE: "bn"
# 其他配置
TRAIN_CROP_SIZE: (512, 512)
EVAL_CROP_SIZE: (512, 512)
AUG:
AUG_METHOD: "unpadding"
FIX_RESIZE_SIZE: (512, 512)
BATCH_SIZE: 4
TRAIN:
PRETRAINED_MODEL_DIR: "./pretrained_model/fast_scnn_cityscape/"
MODEL_SAVE_DIR: "./saved_model/fast_scnn_pet/"
SNAPSHOT_EPOCH: 10
TEST:
TEST_MODEL: "./saved_model/fast_scnn_pet/final"
SOLVER:
NUM_EPOCHS: 100
LR: 0.005
LR_POLICY: "poly"
OPTIMIZER: "sgd"
```
## 四. 配置/数据校验
在开始训练和评估之前,我们还需要对配置和数据进行一次校验,确保数据和配置是正确的。使用下述命令启动校验流程
```shell
python pdseg/check.py --cfg ./configs/fast_scnn_pet.yaml
```
## 五. 开始训练
校验通过后,使用下述命令启动训练
```shell
python pdseg/train.py --use_gpu --cfg ./configs/fast_scnn_pet.yaml
```
## 六. 进行评估
模型训练完成,使用下述命令启动评估
```shell
python pdseg/eval.py --use_gpu --cfg ./configs/fast_scnn_pet.yaml
```
## 七. 实时分割模型推理时间比较
| 模型 | eval size | inference time | mIoU on cityscape val|
|---|---|---|---|
| DeepLabv3+/MobileNetv2/bn | (1024, 2048) |24.12ms| 0.698|
| ICNet/bn |(1024, 2048) |25.24ms| 0.6831 |
| Fast-SCNN/bn | (1024, 2048) |17.24ms| 0.6964 |
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册