提交 6a2361b6 编写于 作者: P pengmian

add pspnet describ

上级 963b9031
......@@ -12,6 +12,7 @@ from models.backbone.resnet import ResNet as resnet_backbone
from utils.config import cfg
def get_logit_interp(input, num_classes, out_shape, name="logit"):
# 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
param_attr = fluid.ParamAttr(
name=name + 'weights',
regularizer=fluid.regularizer.L2DecayRegularizer(
......@@ -19,13 +20,12 @@ def get_logit_interp(input, num_classes, out_shape, name="logit"):
initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
with scope(name):
logit = conv(
input,
num_classes,
filter_size=1,
param_attr=param_attr,
bias_attr=True,
name=name+'.conv2d.output.1')
logit = conv(input,
num_classes,
filter_size=1,
param_attr=param_attr,
bias_attr=True,
name=name+'_conv')
logit_interp = fluid.layers.resize_bilinear(
logit,
out_shape=out_shape,
......@@ -34,53 +34,67 @@ def get_logit_interp(input, num_classes, out_shape, name="logit"):
def psp_module(input, out_features):
# Pyramid Scene Parsing 金字塔池化模块
# 输入:backbone输出的特征
# 输出:对输入进行不同尺度pooling, 卷积操作后插值回原始尺寸,并concat
# 最后进行一个卷积及BN操作
cat_layers = []
sizes = (1,2,3,6)
for size in sizes:
psp_name = "psp_conv" + str(size)
with scope(psp_name):
pool = fluid.layers.adaptive_pool2d(input,
pool_size=[size, size],
pool_type='avg',
name=psp_name+'_adapool')
data = conv(pool, out_features, filter_size=1, bias_attr=True,
name= psp_name + '.conv2d.output.1')
pool_size=[size, size],
pool_type='avg',
name=psp_name+'_adapool')
data = conv(pool, out_features,
filter_size=1,
bias_attr=True,
name= psp_name + '_conv')
data_bn = bn(data, act='relu')
interp = fluid.layers.resize_bilinear(data_bn,
out_shape=input.shape[2:],
name=psp_name+'_interp')
out_shape=input.shape[2:],
name=psp_name+'_interp')
cat_layers.append(interp)
cat_layers = [input] + cat_layers[::-1]
cat = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')
with scope("psp_conv_end"):
psp_end_name = "psp_conv_end"
with scope(psp_end_name):
data = conv(cat,
out_features,
filter_size=3,
padding=1,
bias_attr=True,
name='psp_conv_end.conv2d.output.1')
out_features,
filter_size=3,
padding=1,
bias_attr=True,
name=psp_end_name)
out = bn(data, act='relu')
return out
def resnet(input):
# PSPNET backbone: resnet, ĬÈresnet50
# end_points: resnetÖֹ²ã
# PSPNET backbone: resnet, 默认resnet50
# end_points: resnet终止层数
# dilation_dict: resnet block数及对应的膨胀卷积尺度
scale = cfg.MODEL.ICNET.DEPTH_MULTIPLIER
scale = cfg.MODEL.PSPNET.DEPTH_MULTIPLIER
layers = cfg.MODEL.PSPNET.LAYERS
end_points = layers - 1
dilation_dict = {2:2, 3:4}
model = resnet_backbone(layers, scale, stem='pspnet')
data, _ = model.net(input, end_points=end_points, dilation_dict=dilation_dict)
data, _ = model.net(input,
end_points=end_points,
dilation_dict=dilation_dict)
return data
def pspnet(input, num_classes):
# Backbone: ResNet
res = resnet(input)
# PSP模块
psp = psp_module(res, 512)
#dropout = fluid.layers.dropout(psp, dropout_prob=0.1, name="dropout")
logit = get_logit_interp(psp, num_classes, input.shape[2:])
dropout = fluid.layers.dropout(psp, dropout_prob=0.1, name="dropout")
# 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
logit = get_logit_interp(dropout, num_classes, input.shape[2:])
return logit
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册