未验证 提交 4f0db937 编写于 作者: Z Zeyu Chen 提交者: GitHub

Update README.md

上级 e313b412
......@@ -4,6 +4,8 @@
人体解析(Human Parsing)是细粒度的语义分割任务,旨在识别像素级别的人类图像的组成部分(例如,身体部位和服装)。ACE2P通过融合底层特征、全局上下文信息和边缘细节,
端到端训练学习人体解析任务。以ACE2P单人人体解析网络为基础的解决方案在CVPR2019第三届LIP挑战赛中赢得了全部三个人体解析任务的第一名
Augmented Context Embedding with Edge Perceiving (ACE2P)通过融合底层特征、全局上下文信息和边缘细节,端到端训练学习人体解析任务。以ACE2P单人人体解析网络为基础的解决方案在CVPR2019第三届Look into Person (LIP)挑战赛中赢得了全部三个人体解析任务的第一名。
## 模型框架图
![](imgs/net.jpg)
......@@ -38,6 +40,59 @@ ACE2P模型包含三个分支:
![](imgs/result.jpg)
![](ACE2P/imgs/result.jpg)
人体解析(Human Parsing)是细粒度的语义分割任务,旨在识别像素级别的人类图像的组成部分(例如,身体部位和服装)。本章节使用冠军模型Augmented Context Embedding with Edge Perceiving (ACE2P)进行预测分割。
## 代码使用说明
### 1. 模型下载
执行以下命令下载并解压ACE2P预测模型:
```
python download_ACE2P.py
```
或点击[链接](https://paddleseg.bj.bcebos.com/models/ACE2P.tgz)进行手动下载, 并在contrib/ACE2P下解压。
### 2. 数据下载
测试图片共10000张,
点击 [Baidu_Drive](https://pan.baidu.com/s/1nvqmZBN#list/path=%2Fsharelink2787269280-523292635003760%2FLIP%2FLIP&parentPath=%2Fsharelink2787269280-523292635003760)
下载Testing_images.zip,或前往LIP数据集官网进行下载。
下载后解压到./data文件夹下
### 3. 快速预测
使用GPU预测
```
python -u infer.py --example ACE2P --use_gpu
```
使用CPU预测:
```
python -u infer.py --example ACE2P
```
**NOTE:** 运行该模型需要2G左右显存。由于数据图片较多,预测过程将比较耗时。
#### 4. 预测结果示例:
原图:
![](ACE2P/imgs/117676_2149260.jpg)
预测结果:
![](ACE2P/imgs/117676_2149260.png)
### 备注
1. 数据及模型路径等详细配置见ACE2P/HumanSeg/RoadLine下的config.py文件
2. ACE2P模型需预留2G显存,若显存超可调小FLAGS_fraction_of_gpu_memory_to_use
## 引用
**论文**
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册