Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
3f658a36
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3f658a36
编写于
9月 22, 2020
作者:
M
michaelowenliu
提交者:
GitHub
9月 22, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #396 from michaelowenliu/develop
redesign deeplab model
上级
23d69271
7dac6524
变更
14
隐藏空白更改
内联
并排
Showing
14 changed file
with
412 addition
and
338 deletion
+412
-338
dygraph/paddleseg/core/seg_train.py
dygraph/paddleseg/core/seg_train.py
+8
-5
dygraph/paddleseg/core/val.py
dygraph/paddleseg/core/val.py
+1
-1
dygraph/paddleseg/cvlibs/callbacks.py
dygraph/paddleseg/cvlibs/callbacks.py
+29
-29
dygraph/paddleseg/models/ann.py
dygraph/paddleseg/models/ann.py
+15
-17
dygraph/paddleseg/models/backbones/resnet_vd.py
dygraph/paddleseg/models/backbones/resnet_vd.py
+14
-6
dygraph/paddleseg/models/common/pyramid_pool.py
dygraph/paddleseg/models/common/pyramid_pool.py
+23
-25
dygraph/paddleseg/models/deeplab.py
dygraph/paddleseg/models/deeplab.py
+117
-64
dygraph/paddleseg/models/fast_scnn.py
dygraph/paddleseg/models/fast_scnn.py
+12
-12
dygraph/paddleseg/models/gcnet.py
dygraph/paddleseg/models/gcnet.py
+9
-9
dygraph/paddleseg/models/ocrnet.py
dygraph/paddleseg/models/ocrnet.py
+1
-4
dygraph/paddleseg/models/pspnet.py
dygraph/paddleseg/models/pspnet.py
+5
-4
dygraph/paddleseg/utils/metrics.py
dygraph/paddleseg/utils/metrics.py
+1
-1
dygraph/paddleseg/utils/progbar.py
dygraph/paddleseg/utils/progbar.py
+163
-160
dygraph/paddleseg/utils/utils.py
dygraph/paddleseg/utils/utils.py
+14
-1
未找到文件。
dygraph/paddleseg/core/seg_train.py
浏览文件 @
3f658a36
...
...
@@ -87,7 +87,8 @@ def seg_train(model,
out_labels
=
[
"loss"
,
"reader_cost"
,
"batch_cost"
]
base_logger
=
callbacks
.
BaseLogger
(
period
=
log_iters
)
train_logger
=
callbacks
.
TrainLogger
(
log_freq
=
log_iters
)
model_ckpt
=
callbacks
.
ModelCheckpoint
(
save_dir
,
save_params_only
=
False
,
period
=
save_interval_iters
)
model_ckpt
=
callbacks
.
ModelCheckpoint
(
save_dir
,
save_params_only
=
False
,
period
=
save_interval_iters
)
vdl
=
callbacks
.
VisualDL
(
log_dir
=
os
.
path
.
join
(
save_dir
,
"log"
))
cbks_list
=
[
base_logger
,
train_logger
,
model_ckpt
,
vdl
]
...
...
@@ -120,7 +121,7 @@ def seg_train(model,
iter
+=
1
if
iter
>
iters
:
break
logs
[
"reader_cost"
]
=
timer
.
elapsed_time
()
############## 2 ################
cbks
.
on_iter_begin
(
iter
,
logs
)
...
...
@@ -136,7 +137,7 @@ def seg_train(model,
loss
=
ddp_model
.
scale_loss
(
loss
)
loss
.
backward
()
ddp_model
.
apply_collective_grads
()
else
:
logits
=
model
(
images
)
loss
=
loss_computation
(
logits
,
labels
,
losses
)
...
...
@@ -148,7 +149,7 @@ def seg_train(model,
model
.
clear_gradients
()
logs
[
'loss'
]
=
loss
.
numpy
()[
0
]
logs
[
"batch_cost"
]
=
timer
.
elapsed_time
()
############## 3 ################
...
...
@@ -159,4 +160,6 @@ def seg_train(model,
############### 4 ###############
cbks
.
on_train_end
(
logs
)
#################################
\ No newline at end of file
#################################
dygraph/paddleseg/core/val.py
浏览文件 @
3f658a36
...
...
@@ -67,7 +67,7 @@ def evaluate(model,
pred
=
pred
[
np
.
newaxis
,
:,
:,
np
.
newaxis
]
pred
=
pred
.
astype
(
'int64'
)
mask
=
label
!=
ignore_index
# To-DO Test Execution Time
conf_mat
.
calculate
(
pred
=
pred
,
label
=
label
,
ignore
=
mask
)
_
,
iou
=
conf_mat
.
mean_iou
()
...
...
dygraph/paddleseg/cvlibs/callbacks.py
浏览文件 @
3f658a36
...
...
@@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
time
...
...
@@ -24,6 +23,7 @@ from visualdl import LogWriter
from
paddleseg.utils.progbar
import
Progbar
import
paddleseg.utils.logger
as
logger
class
CallbackList
(
object
):
"""Container abstracting a list of callbacks.
# Arguments
...
...
@@ -44,7 +44,7 @@ class CallbackList(object):
def
set_model
(
self
,
model
):
for
callback
in
self
.
callbacks
:
callback
.
set_model
(
model
)
def
set_optimizer
(
self
,
optimizer
):
for
callback
in
self
.
callbacks
:
callback
.
set_optimizer
(
optimizer
)
...
...
@@ -82,6 +82,7 @@ class CallbackList(object):
def
__iter__
(
self
):
return
iter
(
self
.
callbacks
)
class
Callback
(
object
):
"""Abstract base class used to build new callbacks.
"""
...
...
@@ -94,7 +95,7 @@ class Callback(object):
def
set_model
(
self
,
model
):
self
.
model
=
model
def
set_optimizer
(
self
,
optimizer
):
self
.
optimizer
=
optimizer
...
...
@@ -110,18 +111,18 @@ class Callback(object):
def
on_train_end
(
self
,
logs
=
None
):
pass
class
BaseLogger
(
Callback
):
class
BaseLogger
(
Callback
):
def
__init__
(
self
,
period
=
10
):
super
(
BaseLogger
,
self
).
__init__
()
self
.
period
=
period
def
_reset
(
self
):
self
.
totals
=
{}
def
on_train_begin
(
self
,
logs
=
None
):
self
.
totals
=
{}
def
on_iter_end
(
self
,
iter
,
logs
=
None
):
logs
=
logs
or
{}
#(iter - 1) // iters_per_epoch + 1
...
...
@@ -132,13 +133,13 @@ class BaseLogger(Callback):
self
.
totals
[
k
]
=
v
if
iter
%
self
.
period
==
0
and
ParallelEnv
().
local_rank
==
0
:
for
k
in
self
.
totals
:
logs
[
k
]
=
self
.
totals
[
k
]
/
self
.
period
self
.
_reset
()
class
TrainLogger
(
Callback
):
class
TrainLogger
(
Callback
):
def
__init__
(
self
,
log_freq
=
10
):
self
.
log_freq
=
log_freq
...
...
@@ -154,7 +155,7 @@ class TrainLogger(Callback):
return
result
.
format
(
*
arr
)
def
on_iter_end
(
self
,
iter
,
logs
=
None
):
if
iter
%
self
.
log_freq
==
0
and
ParallelEnv
().
local_rank
==
0
:
total_iters
=
self
.
params
[
"total_iters"
]
iters_per_epoch
=
self
.
params
[
"iters_per_epoch"
]
...
...
@@ -167,49 +168,50 @@ class TrainLogger(Callback):
reader_cost
=
logs
[
"reader_cost"
]
logger
.
info
(
"[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}"
.
format
(
current_epoch
,
iter
,
total_iters
,
loss
,
lr
,
batch_cost
,
reader_cost
,
eta
))
"[TRAIN] epoch={}, iter={}/{}, loss={:.4f}, lr={:.6f}, batch_cost={:.4f}, reader_cost={:.4f} | ETA {}"
.
format
(
current_epoch
,
iter
,
total_iters
,
loss
,
lr
,
batch_cost
,
reader_cost
,
eta
))
class
ProgbarLogger
(
Callback
):
class
ProgbarLogger
(
Callback
):
def
__init__
(
self
):
super
(
ProgbarLogger
,
self
).
__init__
()
def
on_train_begin
(
self
,
logs
=
None
):
self
.
verbose
=
self
.
params
[
"verbose"
]
self
.
total_iters
=
self
.
params
[
"total_iters"
]
self
.
target
=
self
.
params
[
"total_iters"
]
self
.
target
=
self
.
params
[
"total_iters"
]
self
.
progbar
=
Progbar
(
target
=
self
.
target
,
verbose
=
self
.
verbose
)
self
.
seen
=
0
self
.
log_values
=
[]
def
on_iter_begin
(
self
,
iter
,
logs
=
None
):
#self.seen = 0
if
self
.
seen
<
self
.
target
:
self
.
log_values
=
[]
def
on_iter_end
(
self
,
iter
,
logs
=
None
):
logs
=
logs
or
{}
self
.
seen
+=
1
for
k
in
self
.
params
[
'metrics'
]:
if
k
in
logs
:
self
.
log_values
.
append
((
k
,
logs
[
k
]))
#if self.verbose and self.seen < self.target and ParallelEnv.local_rank == 0:
#print(self.log_values)
#print(self.log_values)
if
self
.
seen
<
self
.
target
:
self
.
progbar
.
update
(
self
.
seen
,
self
.
log_values
)
class
ModelCheckpoint
(
Callback
):
def
__init__
(
self
,
save_dir
,
monitor
=
"miou"
,
save_best_only
=
False
,
save_params_only
=
True
,
mode
=
"max"
,
period
=
1
):
def
__init__
(
self
,
save_dir
,
monitor
=
"miou"
,
save_best_only
=
False
,
save_params_only
=
True
,
mode
=
"max"
,
period
=
1
):
super
(
ModelCheckpoint
,
self
).
__init__
()
self
.
monitor
=
monitor
self
.
save_dir
=
save_dir
...
...
@@ -241,7 +243,7 @@ class ModelCheckpoint(Callback):
current_save_dir
=
os
.
path
.
join
(
self
.
save_dir
,
"iter_{}"
.
format
(
iter
))
current_save_dir
=
os
.
path
.
abspath
(
current_save_dir
)
#if self.iters_since_last_save % self.period and ParallelEnv().local_rank == 0:
#self.iters_since_last_save = 0
#self.iters_since_last_save = 0
if
iter
%
self
.
period
==
0
and
ParallelEnv
().
local_rank
==
0
:
if
self
.
verbose
>
0
:
print
(
"iter {iter_num}: saving model to {path}"
.
format
(
...
...
@@ -252,11 +254,9 @@ class ModelCheckpoint(Callback):
if
not
self
.
save_params_only
:
paddle
.
save
(
self
.
optimizer
.
state_dict
(),
filepath
)
class
VisualDL
(
Callback
):
def
__init__
(
self
,
log_dir
=
"./log"
,
freq
=
1
):
super
(
VisualDL
,
self
).
__init__
()
self
.
log_dir
=
log_dir
...
...
@@ -274,4 +274,4 @@ class VisualDL(Callback):
self
.
writer
.
flush
()
def
on_train_end
(
self
,
logs
=
None
):
self
.
writer
.
close
()
\ No newline at end of file
self
.
writer
.
close
()
dygraph/paddleseg/models/ann.py
浏览文件 @
3f658a36
...
...
@@ -28,7 +28,7 @@ class ANN(nn.Layer):
"""
The ANN implementation based on PaddlePaddle.
The or
ginal arti
le refers to
The or
iginal artic
le refers to
Zhen, Zhu, et al. "Asymmetric Non-local Neural Networks for Semantic Segmentation."
(https://arxiv.org/pdf/1908.07678.pdf)
...
...
@@ -37,8 +37,8 @@ class ANN(nn.Layer):
Args:
num_classes (int): the unique number of target classes.
backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.
model_pretrained (str): the path of pretrained model. Defaul
l
t to None.
backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
model_pretrained (str): the path of pretrained model. Default to None.
backbone_indices (tuple): two values in the tuple indic
a
te the indices of output of backbone.
the first index will be taken as low-level features; the second one will be
taken as high-level features in AFNB module. Usually backbone consists of four
downsampling stage, and return an output of each stage, so we set default (2, 3),
...
...
@@ -48,7 +48,7 @@ class ANN(nn.Layer):
Default to 256.
inter_channels (int): both input and output channels of APNB modules.
psp_size (tuple): the out size of pooled feature maps. Default to (1, 3, 6, 8).
enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss. Default to True.
enable_auxiliary_loss (bool): a bool values indic
a
tes whether adding auxiliary loss. Default to True.
"""
def
__init__
(
self
,
...
...
@@ -79,7 +79,7 @@ class ANN(nn.Layer):
psp_size
=
psp_size
)
self
.
context
=
nn
.
Sequential
(
layer_libs
.
ConvB
nRelu
(
layer_libs
.
ConvB
NReLU
(
in_channels
=
high_in_channels
,
out_channels
=
inter_channels
,
kernel_size
=
3
,
...
...
@@ -94,9 +94,7 @@ class ANN(nn.Layer):
psp_size
=
psp_size
))
self
.
cls
=
nn
.
Conv2d
(
in_channels
=
inter_channels
,
out_channels
=
num_classes
,
kernel_size
=
1
)
in_channels
=
inter_channels
,
out_channels
=
num_classes
,
kernel_size
=
1
)
self
.
auxlayer
=
layer_libs
.
AuxLayer
(
in_channels
=
low_in_channels
,
inter_channels
=
low_in_channels
//
2
,
...
...
@@ -122,7 +120,8 @@ class ANN(nn.Layer):
if
self
.
enable_auxiliary_loss
:
auxiliary_logit
=
self
.
auxlayer
(
low_level_x
)
auxiliary_logit
=
F
.
resize_bilinear
(
auxiliary_logit
,
input
.
shape
[
2
:])
auxiliary_logit
=
F
.
resize_bilinear
(
auxiliary_logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
auxiliary_logit
)
return
logit_list
...
...
@@ -219,7 +218,7 @@ class APNB(nn.Layer):
SelfAttentionBlock_APNB
(
in_channels
,
out_channels
,
key_channels
,
value_channels
,
size
)
for
size
in
sizes
])
self
.
conv_bn
=
layer_libs
.
ConvB
nRelu
(
self
.
conv_bn
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
in_channels
*
2
,
out_channels
=
out_channels
,
kernel_size
=
1
)
...
...
@@ -280,11 +279,11 @@ class SelfAttentionBlock_AFNB(nn.Layer):
if
out_channels
==
None
:
self
.
out_channels
=
high_in_channels
self
.
pool
=
nn
.
Pool2D
(
pool_size
=
(
scale
,
scale
),
pool_type
=
"max"
)
self
.
f_key
=
layer_libs
.
ConvB
nRelu
(
self
.
f_key
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
low_in_channels
,
out_channels
=
key_channels
,
kernel_size
=
1
)
self
.
f_query
=
layer_libs
.
ConvB
nRelu
(
self
.
f_query
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
high_in_channels
,
out_channels
=
key_channels
,
kernel_size
=
1
)
...
...
@@ -315,7 +314,7 @@ class SelfAttentionBlock_AFNB(nn.Layer):
key
=
_pp_module
(
key
,
self
.
psp_size
)
sim_map
=
paddle
.
matmul
(
query
,
key
)
sim_map
=
(
self
.
key_channels
**
-
.
5
)
*
sim_map
sim_map
=
(
self
.
key_channels
**
-
.
5
)
*
sim_map
sim_map
=
F
.
softmax
(
sim_map
,
axis
=-
1
)
context
=
paddle
.
matmul
(
sim_map
,
value
)
...
...
@@ -358,7 +357,7 @@ class SelfAttentionBlock_APNB(nn.Layer):
self
.
value_channels
=
value_channels
self
.
pool
=
nn
.
Pool2D
(
pool_size
=
(
scale
,
scale
),
pool_type
=
"max"
)
self
.
f_key
=
layer_libs
.
ConvB
nRelu
(
self
.
f_key
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
self
.
in_channels
,
out_channels
=
self
.
key_channels
,
kernel_size
=
1
)
...
...
@@ -384,15 +383,14 @@ class SelfAttentionBlock_APNB(nn.Layer):
value
=
paddle
.
transpose
(
value
,
perm
=
(
0
,
2
,
1
))
query
=
self
.
f_query
(
x
)
query
=
paddle
.
reshape
(
query
,
shape
=
(
batch_size
,
self
.
key_channels
,
-
1
))
query
=
paddle
.
reshape
(
query
,
shape
=
(
batch_size
,
self
.
key_channels
,
-
1
))
query
=
paddle
.
transpose
(
query
,
perm
=
(
0
,
2
,
1
))
key
=
self
.
f_key
(
x
)
key
=
_pp_module
(
key
,
self
.
psp_size
)
sim_map
=
paddle
.
matmul
(
query
,
key
)
sim_map
=
(
self
.
key_channels
**
-
.
5
)
*
sim_map
sim_map
=
(
self
.
key_channels
**
-
.
5
)
*
sim_map
sim_map
=
F
.
softmax
(
sim_map
,
axis
=-
1
)
context
=
paddle
.
matmul
(
sim_map
,
value
)
...
...
dygraph/paddleseg/models/backbones/resnet_vd.py
浏览文件 @
3f658a36
...
...
@@ -133,8 +133,9 @@ class BottleneckBlock(nn.Layer):
# If given dilation rate > 1, using corresponding padding
if
self
.
dilation
>
1
:
padding
=
self
.
dilation
y
=
F
.
pad
(
y
,
[
0
,
0
,
0
,
0
,
padding
,
padding
,
padding
,
padding
])
y
=
F
.
pad
(
y
,
[
padding
,
padding
,
padding
,
padding
])
#####################################################################
conv1
=
self
.
conv1
(
y
)
conv2
=
self
.
conv2
(
conv1
)
...
...
@@ -197,11 +198,10 @@ class BasicBlock(nn.Layer):
class
ResNet_vd
(
nn
.
Layer
):
def
__init__
(
self
,
backbone_pretrained
=
None
,
layers
=
50
,
class_dim
=
1000
,
output_stride
=
None
,
multi_grid
=
(
1
,
1
,
1
)):
multi_grid
=
(
1
,
1
,
1
),
pretrained
=
None
):
super
(
ResNet_vd
,
self
).
__init__
()
self
.
layers
=
layers
...
...
@@ -224,6 +224,10 @@ class ResNet_vd(nn.Layer):
]
if
layers
>=
50
else
[
64
,
64
,
128
,
256
]
num_filters
=
[
64
,
128
,
256
,
512
]
# for channels of returned stage
self
.
backbone_channels
=
[
c
*
4
for
c
in
num_filters
]
if
layers
>=
50
else
num_filters
dilation_dict
=
None
if
output_stride
==
8
:
dilation_dict
=
{
2
:
2
,
3
:
4
}
...
...
@@ -315,6 +319,8 @@ class ResNet_vd(nn.Layer):
block_list
.
append
(
basic_block
)
shortcut
=
True
self
.
stage_list
.
append
(
block_list
)
utils
.
load_pretrained_model
(
self
,
pretrained
)
def
forward
(
self
,
inputs
):
y
=
self
.
conv1_1
(
inputs
)
...
...
@@ -324,12 +330,14 @@ class ResNet_vd(nn.Layer):
# A feature list saves the output feature map of each stage.
feat_list
=
[]
for
i
,
stage
in
enumerate
(
self
.
stage_list
)
:
for
j
,
block
in
enumerate
(
stage
)
:
for
stage
in
self
.
stage_list
:
for
block
in
stage
:
y
=
block
(
y
)
feat_list
.
append
(
y
)
return
feat_list
@
manager
.
BACKBONES
.
add_component
...
...
dygraph/paddleseg/models/common/pyramid_pool.py
浏览文件 @
3f658a36
...
...
@@ -13,7 +13,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import
paddle
from
paddle
import
nn
import
paddle.nn.functional
as
F
...
...
@@ -34,11 +33,11 @@ class ASPPModule(nn.Layer):
image_pooling: if augmented with image-level features.
"""
def
__init__
(
self
,
aspp_ratios
,
in_channels
,
out_channels
,
sep_conv
=
False
,
def
__init__
(
self
,
aspp_ratios
,
in_channels
,
out_channels
,
sep_conv
=
False
,
image_pooling
=
False
):
super
(
ASPPModule
,
self
).
__init__
()
...
...
@@ -47,42 +46,41 @@ class ASPPModule(nn.Layer):
for
ratio
in
aspp_ratios
:
if
sep_conv
and
ratio
>
1
:
conv_func
=
layer_libs
.
DepthwiseConvB
nRelu
conv_func
=
layer_libs
.
DepthwiseConvB
NReLU
else
:
conv_func
=
layer_libs
.
ConvB
nRelu
conv_func
=
layer_libs
.
ConvB
NReLU
block
=
conv_func
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
if
ratio
==
1
else
3
,
dilation
=
ratio
,
padding
=
0
if
ratio
==
1
else
ratio
)
padding
=
0
if
ratio
==
1
else
ratio
)
self
.
aspp_blocks
.
append
(
block
)
out_size
=
len
(
self
.
aspp_blocks
)
if
image_pooling
:
self
.
global_avg_pool
=
nn
.
Sequential
(
nn
.
AdaptiveAvgPool2d
(
output_size
=
(
1
,
1
)),
layer_libs
.
ConvB
nRelu
(
in_channels
,
out_channels
,
kernel_size
=
1
,
bias_attr
=
False
)
)
layer_libs
.
ConvB
NReLU
(
in_channels
,
out_channels
,
kernel_size
=
1
,
bias_attr
=
False
)
)
out_size
+=
1
self
.
image_pooling
=
image_pooling
self
.
conv_bn_relu
=
layer_libs
.
ConvB
nRelu
(
in_channels
=
out_channels
*
out_size
,
out_channels
=
out_channels
,
self
.
conv_bn_relu
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
out_channels
*
out_size
,
out_channels
=
out_channels
,
kernel_size
=
1
)
self
.
dropout
=
nn
.
Dropout
(
p
=
0.1
)
# drop rate
self
.
dropout
=
nn
.
Dropout
(
p
=
0.1
)
# drop rate
def
forward
(
self
,
x
):
outputs
=
[]
for
block
in
self
.
aspp_blocks
:
outputs
.
append
(
block
(
x
))
if
self
.
image_pooling
:
img_avg
=
self
.
global_avg_pool
(
x
)
img_avg
=
F
.
resize_bilinear
(
img_avg
,
out_shape
=
x
.
shape
[
2
:])
...
...
@@ -93,17 +91,17 @@ class ASPPModule(nn.Layer):
x
=
self
.
dropout
(
x
)
return
x
class
PPModule
(
nn
.
Layer
):
"""
Pyramid pooling module orginally in PSPNet
Pyramid pooling module or
i
ginally in PSPNet
Args:
in_channels (int): the number of intput channels to pyramid pooling module.
out_channels (int): the number of output channels after pyramid pooling module.
bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
dim_reduction (bool): a bool value represent if redu
ing diment
ion after pooling. Default to True.
dim_reduction (bool): a bool value represent if redu
cing dimens
ion after pooling. Default to True.
"""
def
__init__
(
self
,
...
...
@@ -125,7 +123,7 @@ class PPModule(nn.Layer):
for
size
in
bin_sizes
])
self
.
conv_bn_relu2
=
layer_libs
.
ConvB
nRelu
(
self
.
conv_bn_relu2
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
in_channels
+
inter_channels
*
len
(
bin_sizes
),
out_channels
=
out_channels
,
kernel_size
=
3
,
...
...
@@ -135,7 +133,7 @@ class PPModule(nn.Layer):
"""
Create one pooling layer.
In our implementation, we adopt the same dimen
t
ion reduction as the original paper that might be
In our implementation, we adopt the same dimen
s
ion reduction as the original paper that might be
slightly different with other implementations.
After pooling, the channels are reduced to 1/len(bin_sizes) immediately, while some other implementations
...
...
@@ -151,7 +149,7 @@ class PPModule(nn.Layer):
"""
prior
=
nn
.
AdaptiveAvgPool2d
(
output_size
=
(
size
,
size
))
conv
=
layer_libs
.
ConvB
nRelu
(
conv
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
in_channels
,
out_channels
=
out_channels
,
kernel_size
=
1
)
return
nn
.
Sequential
(
prior
,
conv
)
...
...
@@ -167,4 +165,4 @@ class PPModule(nn.Layer):
cat
=
paddle
.
concat
(
cat_layers
,
axis
=
1
)
out
=
self
.
conv_bn_relu2
(
cat
)
return
out
\ No newline at end of file
return
out
dygraph/paddleseg/models/deeplab.py
浏览文件 @
3f658a36
...
...
@@ -29,140 +29,193 @@ class DeepLabV3P(nn.Layer):
"""
The DeepLabV3Plus implementation based on PaddlePaddle.
The orginal artile refers to
"Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, Hartwig Adam.
The original article refers to
Liang-Chieh Chen, et, al. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation"
(https://arxiv.org/abs/1802.02611)
The DeepLabV3P consists of three main components, Backbone, ASPP and Decoder.
Args:
num_classes (int): the unique number of target classes.
backbone (paddle.nn.Layer): backbone network, currently support Xception65, Resnet101_vd.
model_pretrained (str): the path of pretrained model.
aspp_ratios (tuple): the dilation rate using in ASSP module.
if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
if output_stride=8, aspp_ratios is (1, 12, 24, 36).
backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
the first index will be taken as a low-level feature in Deconder component;
backbone (paddle.nn.Layer): backbone network, currently support Resnet50_vd/Resnet101_vd/Xception65.
backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a low-level feature in Decoder component;
the second one will be taken as input of ASPP component.
Usually backbone consists of four downsampling stage, and return an output of
each stage, so we set default (0, 3), which means taking feature map of the first
stage in backbone as low-level feature used in Decoder, and feature map of the fourth
stage as input of ASPP.
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
aspp_ratios (tuple): the dilation rate using in ASSP module.
if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
if output_stride=8, aspp_ratios is (1, 12, 24, 36).
aspp_out_channels (int): the output channels of ASPP module.
pretrained (str): the path of pretrained model for fine tuning.
"""
def
__init__
(
self
,
num_classes
,
backbone
,
backbone_pretrained
=
None
,
model_pretrained
=
None
,
backbone_indices
=
(
0
,
3
),
backbone_channels
=
(
256
,
2048
),
aspp_ratios
=
(
1
,
6
,
12
,
18
),
aspp_out_channels
=
256
):
aspp_out_channels
=
256
,
pretrained
=
None
):
super
(
DeepLabV3P
,
self
).
__init__
()
self
.
backbone
=
backbone
self
.
backbone_pretrained
=
backbone_pretrained
self
.
model_pretrained
=
model_pretrained
backbone_channels
=
backbone
.
backbone_channels
self
.
head
=
DeepLabV3PHead
(
num_classes
,
backbone_indices
,
backbone_channels
,
aspp_ratios
,
aspp_out_channels
)
utils
.
load_entire_model
(
self
,
pretrained
)
def
forward
(
self
,
input
):
feat_list
=
self
.
backbone
(
input
)
logit_list
=
self
.
head
(
feat_list
)
return
[
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
for
logit
in
logit_list
]
class
DeepLabV3PHead
(
nn
.
Layer
):
"""
The DeepLabV3PHead implementation based on PaddlePaddle.
Args:
num_classes (int): the unique number of target classes.
backbone_indices (tuple): two values in the tuple indicate the indices of output of backbone.
the first index will be taken as a low-level feature in Decoder component;
the second one will be taken as input of ASPP component.
Usually backbone consists of four downsampling stage, and return an output of
each stage, so we set default (0, 3), which means taking feature map of the first
stage in backbone as low-level feature used in Decoder, and feature map of the fourth
stage as input of ASPP.
backbone_channels (tuple): returned channels of backbone
aspp_ratios (tuple): the dilation rate using in ASSP module.
if output_stride=16, aspp_ratios should be set as (1, 6, 12, 18).
if output_stride=8, aspp_ratios is (1, 12, 24, 36).
aspp_out_channels (int): the output channels of ASPP module.
"""
def
__init__
(
self
,
num_classes
,
backbone_indices
,
backbone_channels
,
aspp_ratios
=
(
1
,
6
,
12
,
18
),
aspp_out_channels
=
256
):
super
(
DeepLabV3PHead
,
self
).
__init__
()
self
.
aspp
=
pyramid_pool
.
ASPPModule
(
aspp_ratios
,
backbone_channels
[
1
],
aspp_out_channels
,
sep_conv
=
True
,
image_pooling
=
True
)
self
.
decoder
=
Decoder
(
num_classes
,
backbone_channels
[
0
])
aspp_ratios
,
backbone_channels
[
backbone_indices
[
1
]],
aspp_out_channels
,
sep_conv
=
True
,
image_pooling
=
True
)
self
.
decoder
=
Decoder
(
num_classes
,
backbone_channels
[
backbone_indices
[
0
]])
self
.
backbone_indices
=
backbone_indices
self
.
init_weight
()
def
forward
(
self
,
input
,
label
=
None
):
def
forward
(
self
,
feat_list
):
logit_list
=
[]
_
,
feat_list
=
self
.
backbone
(
input
)
low_level_feat
=
feat_list
[
self
.
backbone_indices
[
0
]]
x
=
feat_list
[
self
.
backbone_indices
[
1
]]
x
=
self
.
aspp
(
x
)
logit
=
self
.
decoder
(
x
,
low_level_feat
)
logit
=
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
logit
)
return
logit_list
def
init_weight
(
self
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
self
.
model_pretrained
is
not
None
:
utils
.
load_pretrained_model
(
self
,
self
.
model_pretrained
)
elif
self
.
backbone_pretrained
is
not
None
:
utils
.
load_pretrained_model
(
self
.
backbone
,
self
.
backbone_pretrained
)
pass
@
manager
.
MODELS
.
add_component
class
DeepLabV3
(
nn
.
Layer
):
"""
The DeepLabV3 implementation based on PaddlePaddle.
The orginal article refers to
"Rethinking Atrous Convolution for Semantic Image Segmentation"
Liang-Chieh Chen, George Papandreou, Florian Schroff, Hartwig Adam.
The original article refers to
Liang-Chieh Chen, et, al. "Rethinking Atrous Convolution for Semantic Image Segmentation"
(https://arxiv.org/pdf/1706.05587.pdf)
Args:
Refer to DeepLabV3P above
"""
def
__init__
(
self
,
num_classes
,
backbone
,
backbone_pretrained
=
None
,
model_pretrained
=
None
,
backbone_indices
=
(
3
,),
backbone_channels
=
(
2048
,),
pretrained
=
None
,
backbone_indices
=
(
3
,
),
aspp_ratios
=
(
1
,
6
,
12
,
18
),
aspp_out_channels
=
256
):
super
(
DeepLabV3
,
self
).
__init__
()
self
.
backbone
=
backbone
backbone_channels
=
backbone
.
backbone_channels
self
.
head
=
DeepLabV3Head
(
num_classes
,
backbone_indices
,
backbone_channels
,
aspp_ratios
,
aspp_out_channels
)
utils
.
load_entire_model
(
self
,
pretrained
)
def
forward
(
self
,
input
):
feat_list
=
self
.
backbone
(
input
)
logit_list
=
self
.
head
(
feat_list
)
return
[
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
for
logit
in
logit_list
]
class
DeepLabV3Head
(
nn
.
Layer
):
def
__init__
(
self
,
num_classes
,
backbone_indices
=
(
3
,
),
backbone_channels
=
(
2048
,
),
aspp_ratios
=
(
1
,
6
,
12
,
18
),
aspp_out_channels
=
256
):
super
(
DeepLabV3Head
,
self
).
__init__
()
self
.
aspp
=
pyramid_pool
.
ASPPModule
(
aspp_ratios
,
backbone_channels
[
0
],
aspp_out_channels
,
sep_conv
=
False
,
image_pooling
=
True
)
aspp_ratios
,
backbone_channels
[
backbone_indices
[
0
]],
aspp_out_channels
,
sep_conv
=
False
,
image_pooling
=
True
)
self
.
cls
=
nn
.
Conv2d
(
in_channels
=
backbone_channels
[
0
],
in_channels
=
backbone_channels
[
backbone_indices
[
0
]
],
out_channels
=
num_classes
,
kernel_size
=
1
)
self
.
backbone_indices
=
backbone_indices
self
.
init_weight
(
model_pretrained
)
self
.
init_weight
()
def
forward
(
self
,
input
,
label
=
None
):
def
forward
(
self
,
feat_list
):
logit_list
=
[]
_
,
feat_list
=
self
.
backbone
(
input
)
x
=
feat_list
[
self
.
backbone_indices
[
0
]]
logit
=
self
.
cls
(
x
)
logit
=
F
.
resize_bilinear
(
logit
,
input
.
shape
[
2
:])
logit_list
.
append
(
logit
)
return
logit_list
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
if
pretrained_model
is
not
None
:
if
os
.
path
.
exists
(
pretrained_model
):
utils
.
load_pretrained_model
(
self
,
pretrained_model
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained_model
))
def
init_weight
(
self
):
pass
class
Decoder
(
nn
.
Layer
):
...
...
@@ -178,12 +231,12 @@ class Decoder(nn.Layer):
def
__init__
(
self
,
num_classes
,
in_channels
):
super
(
Decoder
,
self
).
__init__
()
self
.
conv_bn_relu1
=
layer_libs
.
ConvB
nRelu
(
self
.
conv_bn_relu1
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
in_channels
,
out_channels
=
48
,
kernel_size
=
1
)
self
.
conv_bn_relu2
=
layer_libs
.
DepthwiseConvB
nRelu
(
self
.
conv_bn_relu2
=
layer_libs
.
DepthwiseConvB
NReLU
(
in_channels
=
304
,
out_channels
=
256
,
kernel_size
=
3
,
padding
=
1
)
self
.
conv_bn_relu3
=
layer_libs
.
DepthwiseConvB
nRelu
(
self
.
conv_bn_relu3
=
layer_libs
.
DepthwiseConvB
NReLU
(
in_channels
=
256
,
out_channels
=
256
,
kernel_size
=
3
,
padding
=
1
)
self
.
conv
=
nn
.
Conv2d
(
in_channels
=
256
,
out_channels
=
num_classes
,
kernel_size
=
1
)
...
...
dygraph/paddleseg/models/fast_scnn.py
浏览文件 @
3f658a36
...
...
@@ -26,15 +26,15 @@ class FastSCNN(nn.Layer):
As mentioned in the original paper, FastSCNN is a real-time segmentation algorithm (123.5fps)
even for high resolution images (1024x2048).
The or
ginal arti
le refers to
The or
iginal artic
le refers to
Poudel, Rudra PK, et al. "Fast-scnn: Fast semantic segmentation network."
(https://arxiv.org/pdf/1902.04502.pdf)
Args:
num_classes (int): the unique number of target classes. Default to 2.
model_pretrained (str): the path of pretrained model. Defaul
l
t to None.
enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss.
model_pretrained (str): the path of pretrained model. Default to None.
enable_auxiliary_loss (bool): a bool values indic
a
tes whether adding auxiliary loss.
if true, auxiliary loss will be added after LearningToDownsample module, where the weight is 0.4. Default to False.
"""
...
...
@@ -105,15 +105,15 @@ class LearningToDownsample(nn.Layer):
def
__init__
(
self
,
dw_channels1
=
32
,
dw_channels2
=
48
,
out_channels
=
64
):
super
(
LearningToDownsample
,
self
).
__init__
()
self
.
conv_bn_relu
=
layer_libs
.
ConvB
nRelu
(
self
.
conv_bn_relu
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
3
,
out_channels
=
dw_channels1
,
kernel_size
=
3
,
stride
=
2
)
self
.
dsconv_bn_relu1
=
layer_libs
.
DepthwiseConvB
nRelu
(
self
.
dsconv_bn_relu1
=
layer_libs
.
DepthwiseConvB
NReLU
(
in_channels
=
dw_channels1
,
out_channels
=
dw_channels2
,
kernel_size
=
3
,
stride
=
2
,
padding
=
1
)
self
.
dsconv_bn_relu2
=
layer_libs
.
DepthwiseConvB
nRelu
(
self
.
dsconv_bn_relu2
=
layer_libs
.
DepthwiseConvB
NReLU
(
in_channels
=
dw_channels2
,
out_channels
=
out_channels
,
kernel_size
=
3
,
...
...
@@ -208,13 +208,13 @@ class LinearBottleneck(nn.Layer):
expand_channels
=
in_channels
*
expansion
self
.
block
=
nn
.
Sequential
(
# pw
layer_libs
.
ConvB
nRelu
(
layer_libs
.
ConvB
NReLU
(
in_channels
=
in_channels
,
out_channels
=
expand_channels
,
kernel_size
=
1
,
bias_attr
=
False
),
# dw
layer_libs
.
ConvB
nRelu
(
layer_libs
.
ConvB
NReLU
(
in_channels
=
expand_channels
,
out_channels
=
expand_channels
,
kernel_size
=
3
,
...
...
@@ -239,7 +239,7 @@ class LinearBottleneck(nn.Layer):
class
FeatureFusionModule
(
nn
.
Layer
):
"""
Feature Fusion Module Impleme
m
tation.
Feature Fusion Module Impleme
n
tation.
This module fuses high-resolution feature and low-resolution feature.
...
...
@@ -253,7 +253,7 @@ class FeatureFusionModule(nn.Layer):
super
(
FeatureFusionModule
,
self
).
__init__
()
# There only depth-wise conv is used WITHOUT point-wise conv
self
.
dwconv
=
layer_libs
.
ConvB
nRelu
(
self
.
dwconv
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
low_in_channels
,
out_channels
=
out_channels
,
kernel_size
=
3
,
...
...
@@ -301,13 +301,13 @@ class Classifier(nn.Layer):
def
__init__
(
self
,
input_channels
,
num_classes
):
super
(
Classifier
,
self
).
__init__
()
self
.
dsconv1
=
layer_libs
.
DepthwiseConvB
nRelu
(
self
.
dsconv1
=
layer_libs
.
DepthwiseConvB
NReLU
(
in_channels
=
input_channels
,
out_channels
=
input_channels
,
kernel_size
=
3
,
padding
=
1
)
self
.
dsconv2
=
layer_libs
.
DepthwiseConvB
nRelu
(
self
.
dsconv2
=
layer_libs
.
DepthwiseConvB
NReLU
(
in_channels
=
input_channels
,
out_channels
=
input_channels
,
kernel_size
=
3
,
...
...
dygraph/paddleseg/models/gcnet.py
浏览文件 @
3f658a36
...
...
@@ -27,15 +27,15 @@ class GCNet(nn.Layer):
"""
The GCNet implementation based on PaddlePaddle.
The or
ginal arti
le refers to
The or
iginal artic
le refers to
Cao, Yue, et al. "GCnet: Non-local networks meet squeeze-excitation networks and beyond."
(https://arxiv.org/pdf/1904.11492.pdf)
Args:
num_classes (int): the unique number of target classes.
backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.
model_pretrained (str): the path of pretrained model. Defaul
l
t to None.
backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
model_pretrained (str): the path of pretrained model. Default to None.
backbone_indices (tuple): two values in the tuple indic
a
te the indices of output of backbone.
the first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of GlobalContextBlock. Usually backbone
consists of four downsampling stage, and return an output of each stage, so we
...
...
@@ -43,8 +43,8 @@ class GCNet(nn.Layer):
and the fourth stage (res5c) in backbone.
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
gc_channels (int): input channels to Global Context Block. Default to 512.
ratio (float): it indictes the ratio of attention channels and gc_channels. Default to 1/4.
enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss. Default to True.
ratio (float): it indic
a
tes the ratio of attention channels and gc_channels. Default to 1/4.
enable_auxiliary_loss (bool): a bool values indic
a
tes whether adding auxiliary loss. Default to True.
"""
def
__init__
(
self
,
...
...
@@ -63,7 +63,7 @@ class GCNet(nn.Layer):
self
.
backbone
=
backbone
in_channels
=
backbone_channels
[
1
]
self
.
conv_bn_relu1
=
layer_libs
.
ConvB
nRelu
(
self
.
conv_bn_relu1
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
in_channels
,
out_channels
=
gc_channels
,
kernel_size
=
3
,
...
...
@@ -71,13 +71,13 @@ class GCNet(nn.Layer):
self
.
gc_block
=
GlobalContextBlock
(
in_channels
=
gc_channels
,
ratio
=
ratio
)
self
.
conv_bn_relu2
=
layer_libs
.
ConvB
nRelu
(
self
.
conv_bn_relu2
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
gc_channels
,
out_channels
=
gc_channels
,
kernel_size
=
3
,
padding
=
1
)
self
.
conv_bn_relu3
=
layer_libs
.
ConvB
nRelu
(
self
.
conv_bn_relu3
=
layer_libs
.
ConvB
NReLU
(
in_channels
=
in_channels
+
gc_channels
,
out_channels
=
gc_channels
,
kernel_size
=
3
,
...
...
@@ -154,7 +154,7 @@ class GlobalContextBlock(nn.Layer):
in_channels
=
in_channels
,
out_channels
=
1
,
kernel_size
=
1
)
self
.
softmax
=
nn
.
Softmax
(
axis
=
2
)
inter_channels
=
int
(
in_channels
*
ratio
)
self
.
channel_add_conv
=
nn
.
Sequential
(
nn
.
Conv2d
(
...
...
dygraph/paddleseg/models/ocrnet.py
浏览文件 @
3f658a36
...
...
@@ -124,7 +124,6 @@ class ObjectAttentionBlock(nn.Layer):
class
OCRHead
(
nn
.
Layer
):
"""
The Object contextual representation head.
Args:
num_classes(int): the unique number of target classes.
in_channels(tuple): the number of input channels.
...
...
@@ -179,11 +178,9 @@ class OCRHead(nn.Layer):
class
OCRNet
(
nn
.
Layer
):
"""
The OCRNet implementation based on PaddlePaddle.
The original article refers to
Yuan, Yuhui, et al. "Object-Contextual Representations for Semantic Segmentation"
(https://arxiv.org/pdf/1909.11065.pdf)
Args:
num_classes(int): the unique number of target classes.
backbone(Paddle.nn.Layer): backbone network.
...
...
@@ -234,4 +231,4 @@ class OCRNet(nn.Layer):
utils
.
load_pretrained_model
(
self
,
pretrained
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained
))
'Pretrained model is not found: {}'
.
format
(
pretrained
))
\ No newline at end of file
dygraph/paddleseg/models/pspnet.py
浏览文件 @
3f658a36
...
...
@@ -26,7 +26,7 @@ class PSPNet(nn.Layer):
"""
The PSPNet implementation based on PaddlePaddle.
The or
ginal arti
le refers to
The or
iginal artic
le refers to
Zhao, Hengshuang, et al. "Pyramid scene parsing network."
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
(https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf)
...
...
@@ -34,8 +34,8 @@ class PSPNet(nn.Layer):
Args:
num_classes (int): the unique number of target classes.
backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.
model_pretrained (str): the path of pretrained model. Defaul
l
t to None.
backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
model_pretrained (str): the path of pretrained model. Default to None.
backbone_indices (tuple): two values in the tuple indic
a
te the indices of output of backbone.
the first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of Pyramid Pooling Module (PPModule).
Usually backbone consists of four downsampling stage, and return an output of
...
...
@@ -44,7 +44,7 @@ class PSPNet(nn.Layer):
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
pp_out_channels (int): output channels after Pyramid Pooling Module. Default to 1024.
bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss. Default to True.
enable_auxiliary_loss (bool): a bool values indic
a
tes whether adding auxiliary loss. Default to True.
"""
def
__init__
(
self
,
...
...
@@ -107,6 +107,7 @@ class PSPNet(nn.Layer):
def
init_weight
(
self
,
pretrained_model
=
None
):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
"""
...
...
dygraph/paddleseg/utils/metrics.py
浏览文件 @
3f658a36
...
...
@@ -41,7 +41,7 @@ class ConfusionMatrix(object):
label
=
np
.
asarray
(
label
)[
mask
]
pred
=
np
.
asarray
(
pred
)[
mask
]
one
=
np
.
ones_like
(
pred
)
# Accumuate ([row=label, col=pred], 1) into sparse
matrix
# Accumuate ([row=label, col=pred], 1) into sparse
spm
=
csr_matrix
((
one
,
(
label
,
pred
)),
shape
=
(
self
.
num_classes
,
self
.
num_classes
))
spm
=
spm
.
todense
()
...
...
dygraph/paddleseg/utils/progbar.py
浏览文件 @
3f658a36
...
...
@@ -17,8 +17,9 @@ import time
import
numpy
as
np
class
Progbar
(
object
):
"""Displays a progress bar.
"""Displays a progress bar.
refers to https://github.com/keras-team/keras/blob/keras-2/keras/utils/generic_utils.py
Arguments:
target: Total number of steps expected, None if unknown.
...
...
@@ -31,39 +32,39 @@ class Progbar(object):
unit_name: Display name for step counts (usually "step" or "sample").
"""
def
__init__
(
self
,
target
,
width
=
30
,
verbose
=
1
,
interval
=
0.05
,
stateful_metrics
=
None
,
unit_name
=
'step'
):
self
.
target
=
target
self
.
width
=
width
self
.
verbose
=
verbose
self
.
interval
=
interval
self
.
unit_name
=
unit_name
if
stateful_metrics
:
self
.
stateful_metrics
=
set
(
stateful_metrics
)
else
:
self
.
stateful_metrics
=
set
()
self
.
_dynamic_display
=
((
hasattr
(
sys
.
stdout
,
'isatty'
)
and
sys
.
stdout
.
isatty
())
or
'ipykernel'
in
sys
.
modules
or
'posix'
in
sys
.
modules
or
'PYCHARM_HOSTED'
in
os
.
environ
)
self
.
_total_width
=
0
self
.
_seen_so_far
=
0
# We use a dict + list to avoid garbage collection
# issues found in OrderedDict
self
.
_values
=
{}
self
.
_values_order
=
[]
self
.
_start
=
time
.
time
()
self
.
_last_update
=
0
def
update
(
self
,
current
,
values
=
None
,
finalize
=
None
):
"""Updates the progress bar.
def
__init__
(
self
,
target
,
width
=
30
,
verbose
=
1
,
interval
=
0.05
,
stateful_metrics
=
None
,
unit_name
=
'step'
):
self
.
target
=
target
self
.
width
=
width
self
.
verbose
=
verbose
self
.
interval
=
interval
self
.
unit_name
=
unit_name
if
stateful_metrics
:
self
.
stateful_metrics
=
set
(
stateful_metrics
)
else
:
self
.
stateful_metrics
=
set
()
self
.
_dynamic_display
=
((
hasattr
(
sys
.
stdout
,
'isatty'
)
and
sys
.
stdout
.
isatty
())
or
'ipykernel'
in
sys
.
modules
or
'posix'
in
sys
.
modules
or
'PYCHARM_HOSTED'
in
os
.
environ
)
self
.
_total_width
=
0
self
.
_seen_so_far
=
0
# We use a dict + list to avoid garbage collection
# issues found in OrderedDict
self
.
_values
=
{}
self
.
_values_order
=
[]
self
.
_start
=
time
.
time
()
self
.
_last_update
=
0
def
update
(
self
,
current
,
values
=
None
,
finalize
=
None
):
"""Updates the progress bar.
Arguments:
current: Index of current step.
values: List of tuples: `(name, value_for_last_step)`. If `name` is in
...
...
@@ -72,129 +73,131 @@ class Progbar(object):
finalize: Whether this is the last update for the progress bar. If
`None`, defaults to `current >= self.target`.
"""
if
finalize
is
None
:
if
self
.
target
is
None
:
finalize
=
False
else
:
finalize
=
current
>=
self
.
target
values
=
values
or
[]
for
k
,
v
in
values
:
if
k
not
in
self
.
_values_order
:
self
.
_values_order
.
append
(
k
)
if
k
not
in
self
.
stateful_metrics
:
# In the case that progress bar doesn't have a target value in the first
# epoch, both on_batch_end and on_epoch_end will be called, which will
# cause 'current' and 'self._seen_so_far' to have the same value. Force
# the minimal value to 1 here, otherwise stateful_metric will be 0s.
value_base
=
max
(
current
-
self
.
_seen_so_far
,
1
)
if
k
not
in
self
.
_values
:
self
.
_values
[
k
]
=
[
v
*
value_base
,
value_base
]
else
:
self
.
_values
[
k
][
0
]
+=
v
*
value_base
self
.
_values
[
k
][
1
]
+=
value_base
else
:
# Stateful metrics output a numeric value. This representation
# means "take an average from a single value" but keeps the
# numeric formatting.
self
.
_values
[
k
]
=
[
v
,
1
]
self
.
_seen_so_far
=
current
now
=
time
.
time
()
info
=
' - %.0fs'
%
(
now
-
self
.
_start
)
if
self
.
verbose
==
1
:
if
now
-
self
.
_last_update
<
self
.
interval
and
not
finalize
:
return
prev_total_width
=
self
.
_total_width
if
self
.
_dynamic_display
:
sys
.
stdout
.
write
(
'
\b
'
*
prev_total_width
)
sys
.
stdout
.
write
(
'
\r
'
)
else
:
sys
.
stdout
.
write
(
'
\n
'
)
if
self
.
target
is
not
None
:
numdigits
=
int
(
np
.
log10
(
self
.
target
))
+
1
bar
=
(
'%'
+
str
(
numdigits
)
+
'd/%d ['
)
%
(
current
,
self
.
target
)
prog
=
float
(
current
)
/
self
.
target
prog_width
=
int
(
self
.
width
*
prog
)
if
prog_width
>
0
:
bar
+=
(
'='
*
(
prog_width
-
1
))
if
current
<
self
.
target
:
bar
+=
'>'
else
:
bar
+=
'='
bar
+=
(
'.'
*
(
self
.
width
-
prog_width
))
bar
+=
']'
else
:
bar
=
'%7d/Unknown'
%
current
self
.
_total_width
=
len
(
bar
)
sys
.
stdout
.
write
(
bar
)
if
current
:
time_per_unit
=
(
now
-
self
.
_start
)
/
current
else
:
time_per_unit
=
0
if
self
.
target
is
None
or
finalize
:
if
time_per_unit
>=
1
or
time_per_unit
==
0
:
info
+=
' %.0fs/%s'
%
(
time_per_unit
,
self
.
unit_name
)
elif
time_per_unit
>=
1e-3
:
info
+=
' %.0fms/%s'
%
(
time_per_unit
*
1e3
,
self
.
unit_name
)
else
:
info
+=
' %.0fus/%s'
%
(
time_per_unit
*
1e6
,
self
.
unit_name
)
else
:
eta
=
time_per_unit
*
(
self
.
target
-
current
)
if
eta
>
3600
:
eta_format
=
'%d:%02d:%02d'
%
(
eta
//
3600
,
(
eta
%
3600
)
//
60
,
eta
%
60
)
elif
eta
>
60
:
eta_format
=
'%d:%02d'
%
(
eta
//
60
,
eta
%
60
)
else
:
eta_format
=
'%ds'
%
eta
info
=
' - ETA: %s'
%
eta_format
for
k
in
self
.
_values_order
:
info
+=
' - %s:'
%
k
if
isinstance
(
self
.
_values
[
k
],
list
):
avg
=
np
.
mean
(
self
.
_values
[
k
][
0
]
/
max
(
1
,
self
.
_values
[
k
][
1
]))
if
abs
(
avg
)
>
1e-3
:
info
+=
' %.4f'
%
avg
else
:
info
+=
' %.4e'
%
avg
else
:
info
+=
' %s'
%
self
.
_values
[
k
]
self
.
_total_width
+=
len
(
info
)
if
prev_total_width
>
self
.
_total_width
:
info
+=
(
' '
*
(
prev_total_width
-
self
.
_total_width
))
if
finalize
:
info
+=
'
\n
'
sys
.
stdout
.
write
(
info
)
sys
.
stdout
.
flush
()
elif
self
.
verbose
==
2
:
if
finalize
:
numdigits
=
int
(
np
.
log10
(
self
.
target
))
+
1
count
=
(
'%'
+
str
(
numdigits
)
+
'd/%d'
)
%
(
current
,
self
.
target
)
info
=
count
+
info
for
k
in
self
.
_values_order
:
info
+=
' - %s:'
%
k
avg
=
np
.
mean
(
self
.
_values
[
k
][
0
]
/
max
(
1
,
self
.
_values
[
k
][
1
]))
if
avg
>
1e-3
:
info
+=
' %.4f'
%
avg
else
:
info
+=
' %.4e'
%
avg
info
+=
'
\n
'
sys
.
stdout
.
write
(
info
)
sys
.
stdout
.
flush
()
self
.
_last_update
=
now
def
add
(
self
,
n
,
values
=
None
):
self
.
update
(
self
.
_seen_so_far
+
n
,
values
)
\ No newline at end of file
if
finalize
is
None
:
if
self
.
target
is
None
:
finalize
=
False
else
:
finalize
=
current
>=
self
.
target
values
=
values
or
[]
for
k
,
v
in
values
:
if
k
not
in
self
.
_values_order
:
self
.
_values_order
.
append
(
k
)
if
k
not
in
self
.
stateful_metrics
:
# In the case that progress bar doesn't have a target value in the first
# epoch, both on_batch_end and on_epoch_end will be called, which will
# cause 'current' and 'self._seen_so_far' to have the same value. Force
# the minimal value to 1 here, otherwise stateful_metric will be 0s.
value_base
=
max
(
current
-
self
.
_seen_so_far
,
1
)
if
k
not
in
self
.
_values
:
self
.
_values
[
k
]
=
[
v
*
value_base
,
value_base
]
else
:
self
.
_values
[
k
][
0
]
+=
v
*
value_base
self
.
_values
[
k
][
1
]
+=
value_base
else
:
# Stateful metrics output a numeric value. This representation
# means "take an average from a single value" but keeps the
# numeric formatting.
self
.
_values
[
k
]
=
[
v
,
1
]
self
.
_seen_so_far
=
current
now
=
time
.
time
()
info
=
' - %.0fs'
%
(
now
-
self
.
_start
)
if
self
.
verbose
==
1
:
if
now
-
self
.
_last_update
<
self
.
interval
and
not
finalize
:
return
prev_total_width
=
self
.
_total_width
if
self
.
_dynamic_display
:
sys
.
stdout
.
write
(
'
\b
'
*
prev_total_width
)
sys
.
stdout
.
write
(
'
\r
'
)
else
:
sys
.
stdout
.
write
(
'
\n
'
)
if
self
.
target
is
not
None
:
numdigits
=
int
(
np
.
log10
(
self
.
target
))
+
1
bar
=
(
'%'
+
str
(
numdigits
)
+
'd/%d ['
)
%
(
current
,
self
.
target
)
prog
=
float
(
current
)
/
self
.
target
prog_width
=
int
(
self
.
width
*
prog
)
if
prog_width
>
0
:
bar
+=
(
'='
*
(
prog_width
-
1
))
if
current
<
self
.
target
:
bar
+=
'>'
else
:
bar
+=
'='
bar
+=
(
'.'
*
(
self
.
width
-
prog_width
))
bar
+=
']'
else
:
bar
=
'%7d/Unknown'
%
current
self
.
_total_width
=
len
(
bar
)
sys
.
stdout
.
write
(
bar
)
if
current
:
time_per_unit
=
(
now
-
self
.
_start
)
/
current
else
:
time_per_unit
=
0
if
self
.
target
is
None
or
finalize
:
if
time_per_unit
>=
1
or
time_per_unit
==
0
:
info
+=
' %.0fs/%s'
%
(
time_per_unit
,
self
.
unit_name
)
elif
time_per_unit
>=
1e-3
:
info
+=
' %.0fms/%s'
%
(
time_per_unit
*
1e3
,
self
.
unit_name
)
else
:
info
+=
' %.0fus/%s'
%
(
time_per_unit
*
1e6
,
self
.
unit_name
)
else
:
eta
=
time_per_unit
*
(
self
.
target
-
current
)
if
eta
>
3600
:
eta_format
=
'%d:%02d:%02d'
%
(
eta
//
3600
,
(
eta
%
3600
)
//
60
,
eta
%
60
)
elif
eta
>
60
:
eta_format
=
'%d:%02d'
%
(
eta
//
60
,
eta
%
60
)
else
:
eta_format
=
'%ds'
%
eta
info
=
' - ETA: %s'
%
eta_format
for
k
in
self
.
_values_order
:
info
+=
' - %s:'
%
k
if
isinstance
(
self
.
_values
[
k
],
list
):
avg
=
np
.
mean
(
self
.
_values
[
k
][
0
]
/
max
(
1
,
self
.
_values
[
k
][
1
]))
if
abs
(
avg
)
>
1e-3
:
info
+=
' %.4f'
%
avg
else
:
info
+=
' %.4e'
%
avg
else
:
info
+=
' %s'
%
self
.
_values
[
k
]
self
.
_total_width
+=
len
(
info
)
if
prev_total_width
>
self
.
_total_width
:
info
+=
(
' '
*
(
prev_total_width
-
self
.
_total_width
))
if
finalize
:
info
+=
'
\n
'
sys
.
stdout
.
write
(
info
)
sys
.
stdout
.
flush
()
elif
self
.
verbose
==
2
:
if
finalize
:
numdigits
=
int
(
np
.
log10
(
self
.
target
))
+
1
count
=
(
'%'
+
str
(
numdigits
)
+
'd/%d'
)
%
(
current
,
self
.
target
)
info
=
count
+
info
for
k
in
self
.
_values_order
:
info
+=
' - %s:'
%
k
avg
=
np
.
mean
(
self
.
_values
[
k
][
0
]
/
max
(
1
,
self
.
_values
[
k
][
1
]))
if
avg
>
1e-3
:
info
+=
' %.4f'
%
avg
else
:
info
+=
' %.4e'
%
avg
info
+=
'
\n
'
sys
.
stdout
.
write
(
info
)
sys
.
stdout
.
flush
()
self
.
_last_update
=
now
def
add
(
self
,
n
,
values
=
None
):
self
.
update
(
self
.
_seen_so_far
+
n
,
values
)
dygraph/paddleseg/utils/utils.py
浏览文件 @
3f658a36
...
...
@@ -44,6 +44,19 @@ def seconds_to_hms(seconds):
return
hms_str
def
load_entire_model
(
model
,
pretrained
):
if
pretrained
is
not
None
:
if
os
.
path
.
exists
(
pretrained
):
load_pretrained_model
(
model
,
pretrained
)
else
:
raise
Exception
(
'Pretrained model is not found: {}'
.
format
(
pretrained
))
else
:
logger
.
warning
(
'Not all pretrained params of {} to load, '
\
'training from scratch or a pretrained backbone'
.
format
(
model
.
__class__
.
__name__
))
def
load_pretrained_model
(
model
,
pretrained_model
):
if
pretrained_model
is
not
None
:
logger
.
info
(
'Load pretrained model from {}'
.
format
(
pretrained_model
))
...
...
@@ -82,7 +95,7 @@ def load_pretrained_model(model, pretrained_model):
model_state_dict
[
k
]
=
para_state_dict
[
k
]
num_params_loaded
+=
1
model
.
set_dict
(
model_state_dict
)
logger
.
info
(
"There are {}/{} var
ai
bles are loaded."
.
format
(
logger
.
info
(
"There are {}/{} var
ia
bles are loaded."
.
format
(
num_params_loaded
,
len
(
model_state_dict
)))
else
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录