Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
3e19600f
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
3e19600f
编写于
11月 21, 2019
作者:
S
sjtubinlong
提交者:
sjtubinlong
11月 28, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add python inference
上级
dba781af
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
501 addition
and
21 deletion
+501
-21
inference/README.md
inference/README.md
+4
-2
inference/images/humanseg/demo2.jpeg_result.png
inference/images/humanseg/demo2.jpeg_result.png
+0
-0
inference/infer.py
inference/infer.py
+349
-0
inference/python_inference.md
inference/python_inference.md
+59
-0
inference/requirements.txt
inference/requirements.txt
+5
-0
inference/utils/seg_conf_parser.h
inference/utils/seg_conf_parser.h
+84
-19
未找到文件。
inference/README.md
浏览文件 @
3e19600f
# PaddleSeg
C++
预测部署方案
# PaddleSeg 预测部署方案
[
1.说明
](
#1说明
)
...
...
@@ -11,7 +11,7 @@
## 1.说明
本目录提供一个跨平台的图像分割模型的C++预测部署方案,用户通过一定的配置,加上少量的代码,即可把模型集成到自己的服务中,完成图像分割的任务。
本目录提供一个跨平台的图像分割模型的C++
、Python
预测部署方案,用户通过一定的配置,加上少量的代码,即可把模型集成到自己的服务中,完成图像分割的任务。
主要设计的目标包括以下四点:
-
跨平台,支持在 windows 和 Linux 完成编译、开发和部署
...
...
@@ -57,6 +57,8 @@ inference
`Windows`
上推荐使用最新的
`Visual Studio 2019 Community`
直接编译
`CMake`
项目。
针对Python的预测部署方法,可参考以下链接:
[
Python预测部署方法
](
python_inference.md
)
## 4.预测并可视化结果
完成编译后,便生成了需要的可执行文件和链接库,然后执行以下步骤:
...
...
inference/images/humanseg/demo2.jpeg_result.png
0 → 100644
浏览文件 @
3e19600f
434.3 KB
inference/infer.py
0 → 100644
浏览文件 @
3e19600f
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
sys
import
time
import
gflags
import
yaml
import
numpy
as
np
import
cv2
from
paddle.fluid.core
import
AnalysisConfig
from
paddle.fluid.core
import
NativeConfig
from
paddle.fluid.core
import
create_paddle_predictor
from
paddle.fluid.core
import
PaddleTensor
from
paddle.fluid.core
import
PaddleBuf
from
paddle.fluid.core
import
PaddleDType
from
concurrent.futures
import
ThreadPoolExecutor
,
as_completed
gflags
.
DEFINE_string
(
"conf"
,
default
=
""
,
help
=
"Configuration File Path"
)
gflags
.
DEFINE_string
(
"input_dir"
,
default
=
""
,
help
=
"Directory of Input Images"
)
gflags
.
DEFINE_boolean
(
"use_pr"
,
default
=
False
,
help
=
"Use optimized model"
)
Flags
=
gflags
.
FLAGS
# ColorMap for visualization more clearly
color_map
=
[[
128
,
64
,
128
],
[
244
,
35
,
231
],
[
69
,
69
,
69
],
[
102
,
102
,
156
],
[
190
,
153
,
153
],
[
153
,
153
,
153
],
[
250
,
170
,
29
],
[
219
,
219
,
0
],
[
106
,
142
,
35
],
[
152
,
250
,
152
],
[
69
,
129
,
180
],
[
219
,
19
,
60
],
[
255
,
0
,
0
],
[
0
,
0
,
142
],
[
0
,
0
,
69
],
[
0
,
60
,
100
],
[
0
,
79
,
100
],
[
0
,
0
,
230
],
[
119
,
10
,
32
]]
class
ConfItemsNotFoundError
(
Exception
):
def
__init__
(
self
,
message
):
super
().
__init__
(
message
+
" item not Found"
)
class
Config
:
def
__init__
(
self
,
config_dict
):
if
"DEPLOY"
not
in
config_dict
:
raise
ConfItemsNotFoundError
(
"DEPLOY"
)
deploy_dict
=
config_dict
[
"DEPLOY"
]
if
"EVAL_CROP_SIZE"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"EVAL_CROP_SIZE"
)
# 1. get resize
self
.
resize
=
[
int
(
value
)
for
value
in
deploy_dict
[
"EVAL_CROP_SIZE"
].
strip
(
"()"
).
split
(
","
)]
# 2. get mean
if
"MEAN"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"MEAN"
)
self
.
mean
=
deploy_dict
[
"MEAN"
]
# 3. get std
if
"STD"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"STD"
)
self
.
std
=
deploy_dict
[
"STD"
]
# 4. get image type
if
"IMAGE_TYPE"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"IMAGE_TYPE"
)
self
.
img_type
=
deploy_dict
[
"IMAGE_TYPE"
]
# 5. get class number
if
"NUM_CLASSES"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"NUM_CLASSES"
)
self
.
class_num
=
deploy_dict
[
"NUM_CLASSES"
]
# 7. set model path
if
"MODEL_PATH"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"MODEL_PATH"
)
self
.
model_path
=
deploy_dict
[
"MODEL_PATH"
]
# 8. get model file_name
if
"MODEL_FILENAME"
not
in
deploy_dict
:
self
.
model_file_name
=
"__model__"
else
:
self
.
model_file_name
=
deploy_dict
[
"MODEL_FILENAME"
]
# 9. get model param file name
if
"PARAMS_FILENAME"
not
in
deploy_dict
:
self
.
param_file_name
=
"__params__"
else
:
self
.
param_file_name
=
deploy_dict
[
"PARAMS_FILENAME"
]
# 10. get pre_processor
if
"PRE_PROCESSOR"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"PRE_PROCESSOR"
)
self
.
pre_processor
=
deploy_dict
[
"PRE_PROCESSOR"
]
# 11. use_gpu
if
"USE_GPU"
not
in
deploy_dict
:
self
.
use_gpu
=
0
else
:
self
.
use_gpu
=
deploy_dict
[
"USE_GPU"
]
# 12. predictor_mode
if
"PREDICTOR_MODE"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"PREDICTOR_MODE"
)
self
.
predictor_mode
=
deploy_dict
[
"PREDICTOR_MODE"
]
# 13. batch_size
if
"BATCH_SIZE"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"BATCH_SIZE"
)
self
.
batch_size
=
deploy_dict
[
"BATCH_SIZE"
]
# 14. channels
if
"CHANNELS"
not
in
deploy_dict
:
raise
ConfItemsNotFoundError
(
"CHANNELS"
)
self
.
channels
=
deploy_dict
[
"CHANNELS"
]
class
PreProcessor
:
def
__init__
(
self
,
config
):
self
.
resize_size
=
(
config
.
resize
[
0
],
config
.
resize
[
1
])
self
.
mean
=
config
.
mean
self
.
std
=
config
.
std
def
process
(
self
,
image_file
,
im_list
,
ori_h_list
,
ori_w_list
,
idx
,
use_pr
=
False
):
start
=
time
.
time
()
im
=
cv2
.
imread
(
image_file
,
-
1
)
end
=
time
.
time
()
print
(
"imread spent %fs"
%
(
end
-
start
))
channels
=
im
.
shape
[
2
]
ori_h
=
im
.
shape
[
0
]
ori_w
=
im
.
shape
[
1
]
if
channels
==
1
:
im
=
cv2
.
cvtColor
(
im
,
cv2
.
COLOR_GRAY2BGR
)
channels
=
im
.
shape
[
2
]
if
channels
!=
3
and
channels
!=
4
:
print
(
"Only support rgb(gray) or rgba image."
)
return
-
1
if
ori_h
!=
self
.
resize_size
[
0
]
or
ori_w
!=
self
.
resize_size
[
1
]:
start
=
time
.
time
()
im
=
cv2
.
resize
(
im
,
self
.
resize_size
,
fx
=
0
,
fy
=
0
,
interpolation
=
cv2
.
INTER_LINEAR
)
end
=
time
.
time
()
print
(
"resize spent %fs"
%
(
end
-
start
))
if
not
use_pr
:
start
=
time
.
time
()
im_mean
=
np
.
array
(
self
.
mean
).
reshape
((
3
,
1
,
1
))
im_std
=
np
.
array
(
self
.
std
).
reshape
((
3
,
1
,
1
))
# HWC -> CHW, don't use transpose((2, 0, 1))
im
=
im
.
swapaxes
(
1
,
2
)
im
=
im
.
swapaxes
(
0
,
1
)
im
=
im
[:,
:,
:].
astype
(
'float32'
)
/
255.0
im
-=
im_mean
im
/=
im_std
end
=
time
.
time
()
print
(
"preprocessing spent %fs"
%
(
end
-
start
))
im
=
im
[
np
.
newaxis
,:,:,:]
im_list
[
idx
]
=
im
ori_h_list
[
idx
]
=
ori_h
ori_w_list
[
idx
]
=
ori_w
return
im
,
ori_h
,
ori_w
class
Predictor
:
def
__init__
(
self
,
config
):
self
.
config
=
config
model_file
=
os
.
path
.
join
(
config
.
model_path
,
config
.
model_file_name
)
param_file
=
os
.
path
.
join
(
config
.
model_path
,
config
.
param_file_name
)
if
config
.
predictor_mode
==
"NATIVE"
:
predictor_config
=
NativeConfig
()
predictor_config
.
prog_file
=
model_file
predictor_config
.
param_file
=
param_file
predictor_config
.
use_gpu
=
config
.
use_gpu
predictor_config
.
device
=
0
predictor_config
.
fraction_of_gpu_memory
=
0
elif
config
.
predictor_mode
==
"ANALYSIS"
:
predictor_config
=
AnalysisConfig
(
model_file
,
param_file
)
if
config
.
use_gpu
:
predictor_config
.
enable_use_gpu
(
100
,
0
)
else
:
predictor_config
.
disable_gpu
()
# need to use zero copy run
# predictor_config.switch_use_feed_fetch_ops(False)
# predictor_config.enable_tensorrt_engine(
# workspace_size=1<<30,
# max_batch_size=1,
# min_subgraph_size=3,
# precision_mode=AnalysisConfig.Precision.Int8,
# use_static=False,
# use_calib_mode=True
# )
predictor_config
.
switch_specify_input_names
(
True
)
predictor_config
.
enable_memory_optim
()
self
.
predictor
=
create_paddle_predictor
(
predictor_config
)
self
.
preprocessor
=
PreProcessor
(
config
)
self
.
threads_pool
=
ThreadPoolExecutor
(
config
.
batch_size
)
def
make_tensor
(
self
,
inputs
,
batch_size
,
use_pr
=
False
):
im_tensor
=
PaddleTensor
()
im_tensor
.
name
=
"image"
if
not
use_pr
:
im_tensor
.
shape
=
[
batch_size
,
self
.
config
.
channels
,
self
.
config
.
resize
[
1
],
self
.
config
.
resize
[
0
]]
else
:
im_tensor
.
shape
=
[
batch_size
,
self
.
config
.
resize
[
1
],
self
.
config
.
resize
[
0
],
self
.
config
.
channels
]
print
(
im_tensor
.
shape
)
im_tensor
.
dtype
=
PaddleDType
.
FLOAT32
start
=
time
.
time
()
im_tensor
.
data
=
PaddleBuf
(
inputs
.
ravel
().
astype
(
"float32"
))
print
(
"flatten time: %f"
%
(
time
.
time
()
-
start
))
return
[
im_tensor
]
def
output_result
(
self
,
image_name
,
output
,
ori_h
,
ori_w
,
use_pr
=
False
):
mask
=
output
if
not
use_pr
:
mask
=
np
.
argmax
(
output
,
axis
=
0
)
mask
=
mask
.
astype
(
'uint8'
)
mask_png
=
mask
score_png
=
mask_png
[:,
:,
np
.
newaxis
]
score_png
=
np
.
concatenate
([
score_png
]
*
3
,
axis
=
2
)
for
i
in
range
(
score_png
.
shape
[
0
]):
for
j
in
range
(
score_png
.
shape
[
1
]):
score_png
[
i
,
j
]
=
color_map
[
score_png
[
i
,
j
,
0
]]
mask_save_name
=
image_name
+
".png"
cv2
.
imwrite
(
mask_save_name
,
mask_png
,
[
cv2
.
CV_8UC1
])
result_name
=
image_name
+
"_result.png"
result_png
=
score_png
# if not use_pr:
result_png
=
cv2
.
resize
(
result_png
,
(
ori_w
,
ori_h
),
fx
=
0
,
fy
=
0
,
interpolation
=
cv2
.
INTER_CUBIC
)
cv2
.
imwrite
(
result_name
,
result_png
,
[
cv2
.
CV_8UC1
])
print
(
"save result of ["
+
image_name
+
"] done."
)
def
predict
(
self
,
images
):
batch_size
=
self
.
config
.
batch_size
total_runtime
=
0
total_imwrite_time
=
0
for
i
in
range
(
0
,
len
(
images
),
batch_size
):
start
=
time
.
time
()
bz
=
batch_size
if
i
+
batch_size
>=
len
(
images
):
bz
=
len
(
images
)
-
i
im_list
=
[
0
]
*
bz
ori_h_list
=
[
0
]
*
bz
ori_w_list
=
[
0
]
*
bz
tasks
=
[
self
.
threads_pool
.
submit
(
self
.
preprocessor
.
process
,
images
[
i
+
j
],
im_list
,
ori_h_list
,
ori_w_list
,
j
,
Flags
.
use_pr
)
for
j
in
range
(
bz
)]
# join all running threads
for
t
in
as_completed
(
tasks
):
pass
input_data
=
np
.
concatenate
(
im_list
)
input_data
=
self
.
make_tensor
(
input_data
,
bz
,
use_pr
=
Flags
.
use_pr
)
inference_start
=
time
.
time
()
output_data
=
self
.
predictor
.
run
(
input_data
)[
0
]
end
=
time
.
time
()
print
(
"inference time = %fs "
%
(
end
-
inference_start
))
print
(
"runtime = %fs "
%
(
end
-
start
))
total_runtime
+=
(
end
-
start
)
output_data
=
output_data
.
as_ndarray
()
output_start
=
time
.
time
()
for
j
in
range
(
bz
):
self
.
output_result
(
images
[
i
+
j
],
output_data
[
j
],
ori_h_list
[
j
],
ori_w_list
[
j
],
Flags
.
use_pr
)
output_end
=
time
.
time
()
total_imwrite_time
+=
output_end
-
output_start
print
(
"total time = %fs"
%
total_runtime
)
print
(
"total imwrite time = %fs"
%
total_imwrite_time
)
def
usage
():
print
(
"Usage: python infer.py --conf=/config/path/to/your/model "
+
"--input_dir=/directory/of/your/input/images [--use_pr=True]"
)
def
read_conf
(
conf_file
):
if
not
os
.
path
.
exists
(
conf_file
):
raise
FileNotFoundError
(
"Can't find the configuration file path,"
+
" please check whether the configuration"
+
" path is correctly set."
)
f
=
open
(
conf_file
)
config_dict
=
yaml
.
load
(
f
,
Loader
=
yaml
.
FullLoader
)
config
=
Config
(
config_dict
)
return
config
def
read_input_dir
(
input_dir
,
ext
=
".jpg|.jpeg"
):
if
not
os
.
path
.
exists
(
input_dir
):
raise
FileNotFoundError
(
"This input directory doesn't exist, please"
+
" check whether the input directory is"
+
" correctly set."
)
if
not
os
.
path
.
isdir
(
input_dir
):
raise
NotADirectoryError
(
"This input directory in not a directory,"
+
" please check whether the input directory"
+
" is correctly set."
)
files_list
=
[]
ext_list
=
ext
.
split
(
"|"
)
files
=
os
.
listdir
(
input_dir
)
for
file
in
files
:
for
ext_suffix
in
ext_list
:
if
file
.
endswith
(
ext_suffix
):
full_path
=
os
.
path
.
join
(
input_dir
,
file
)
files_list
.
append
(
full_path
)
break
return
files_list
def
main
(
argv
):
# 0. parse the argument
Flags
(
argv
)
if
Flags
.
conf
==
""
or
Flags
.
input_dir
==
""
:
usage
()
return
-
1
try
:
# 1. get a conf dictionary
seg_deploy_configs
=
read_conf
(
Flags
.
conf
)
# 2. get all the images path with extension '.jpeg' at input_dir
images
=
read_input_dir
(
Flags
.
input_dir
)
if
len
(
images
)
==
0
:
print
(
"No Images Found! Please check whether the images format"
+
" is correct. Supporting format: [.jpeg|.jpg]."
)
print
(
images
)
except
Exception
as
e
:
print
(
e
)
return
-
1
# 3. init predictor and predict
seg_predictor
=
Predictor
(
seg_deploy_configs
)
seg_predictor
.
predict
(
images
)
if
__name__
==
"__main__"
:
main
(
sys
.
argv
)
inference/python_inference.md
0 → 100644
浏览文件 @
3e19600f
# PaddleSeg Python 预测部署方案
本说明文档旨在提供一个跨平台的图像分割模型的Python预测部署方案,用户通过一定的配置,加上少量的代码,即可把模型集成到自己的服务中,完成图像分割的任务。
## 前置条件
*
Python2.7+,Python3+
*
pip,pip3
## 主要目录和文件
```
inference
├── infer.py # 完成预测、可视化的Python脚本
└── requirements.txt # 预测部署脚本所依赖的库
```
### Step1:安装PaddlePaddle
可参考以下链接,选择合适版本的PaddlePaddle进行安装。
[
PaddlePaddle安装教程
](
https://www.paddlepaddle.org.cn/install/doc/
)
### Step2:安装Python依赖包
在inference目录下,安装相应的Python预测依赖包
```
bash
pip
install
-r
requirements.txt
```
因为预测部署中需要使用opencv,所以还需要安装相关的动态链接库。相关操作如下:
Ubuntu 下安装相关链接库:
```
bash
apt-get
install
-y
libglib2.0-0 libsm6 libxext6 libxrender-dev
```
CentOS 下安装相关链接库:
```
bash
yum
install
-y
libXext libSM libXrender
```
### Step3:预测
在终端输入以下命令进行预测。
```
python infer.py --conf=/path/to/XXX.yaml --input_dir/path/to/images_directory --use_pr=False
```
预测使用的三个命令参数说明如下:
| 参数 | 含义 |
|-------|----------|
| conf | 模型配置的Yaml文件路径 |
| input_dir | 需要预测的图片目录 |
| use_pr | 是否使用优化模型,默认为False|
*
优化模型:对于图像分割模型,由于模型输入的数据需要使用CPU对读取的图像数据进行预处理,预处理时长较长,为了降低在使用GPU进行端到端预测时的延时,优化模型把预处理部分融入到模型当中。在使用GPU进行预测时,优化模型的预处理部分将会在GPU上进行,大大降低了端到端延时。可使用新版的模型导出工具导出优化模型。
![
avatar
](
images/humanseg/demo2.jpeg
)
输出预测结果
![
avatar
](
images/humanseg/demo2.jpeg_result.png
)
\ No newline at end of file
inference/requirements.txt
0 → 100644
浏览文件 @
3e19600f
python-gflags
pyyaml
numpy
opencv-python
futures
\ No newline at end of file
inference/utils/seg_conf_parser.h
浏览文件 @
3e19600f
...
...
@@ -70,43 +70,108 @@ class PaddleSegModelConfigPaser {
bool
load_config
(
const
std
::
string
&
conf_file
)
{
reset
();
YAML
::
Node
config
=
YAML
::
LoadFile
(
conf_file
);
YAML
::
Node
config
;
try
{
config
=
YAML
::
LoadFile
(
conf_file
);
}
catch
(...)
{
return
false
;
}
// 1. get resize
auto
str
=
config
[
"DEPLOY"
][
"EVAL_CROP_SIZE"
].
as
<
std
::
string
>
();
_resize
=
parse_str_to_vec
<
int
>
(
process_parenthesis
(
str
));
if
(
config
[
"DEPLOY"
][
"EVAL_CROP_SIZE"
].
IsDefined
())
{
auto
str
=
config
[
"DEPLOY"
][
"EVAL_CROP_SIZE"
].
as
<
std
::
string
>
();
_resize
=
parse_str_to_vec
<
int
>
(
process_parenthesis
(
str
));
}
else
{
std
::
cerr
<<
"Please set EVAL_CROP_SIZE: (xx, xx)"
<<
std
::
endl
;
return
false
;
}
// 2. get mean
for
(
const
auto
&
item
:
config
[
"DEPLOY"
][
"MEAN"
])
{
_mean
.
push_back
(
item
.
as
<
float
>
());
if
(
config
[
"DEPLOY"
][
"MEAN"
].
IsDefined
())
{
for
(
const
auto
&
item
:
config
[
"DEPLOY"
][
"MEAN"
])
{
_mean
.
push_back
(
item
.
as
<
float
>
());
}
}
else
{
std
::
cerr
<<
"Please set MEAN: [xx, xx, xx]"
<<
std
::
endl
;
return
false
;
}
// 3. get std
for
(
const
auto
&
item
:
config
[
"DEPLOY"
][
"STD"
])
{
_std
.
push_back
(
item
.
as
<
float
>
());
if
(
config
[
"DEPLOY"
][
"STD"
].
IsDefined
())
{
for
(
const
auto
&
item
:
config
[
"DEPLOY"
][
"STD"
])
{
_std
.
push_back
(
item
.
as
<
float
>
());
}
}
else
{
std
::
cerr
<<
"Please set STD: [xx, xx, xx]"
<<
std
::
endl
;
return
false
;
}
// 4. get image type
_img_type
=
config
[
"DEPLOY"
][
"IMAGE_TYPE"
].
as
<
std
::
string
>
();
if
(
config
[
"DEPLOY"
][
"IMAGE_TYPE"
].
IsDefined
())
{
_img_type
=
config
[
"DEPLOY"
][
"IMAGE_TYPE"
].
as
<
std
::
string
>
();
}
else
{
std
::
cerr
<<
"Please set IMAGE_TYPE:
\"
rgb
\"
or
\"
rgba
\"
"
<<
std
::
endl
;
return
false
;
}
// 5. get class number
_class_num
=
config
[
"DEPLOY"
][
"NUM_CLASSES"
].
as
<
int
>
();
if
(
config
[
"DEPLOY"
][
"NUM_CLASSES"
].
IsDefined
())
{
_class_num
=
config
[
"DEPLOY"
][
"NUM_CLASSES"
].
as
<
int
>
();
}
else
{
std
::
cerr
<<
"Please set NUM_CLASSES: x"
<<
std
::
endl
;
return
false
;
}
// 7. set model path
_model_path
=
config
[
"DEPLOY"
][
"MODEL_PATH"
].
as
<
std
::
string
>
();
if
(
config
[
"DEPLOY"
][
"MODEL_PATH"
].
IsDefined
())
{
_model_path
=
config
[
"DEPLOY"
][
"MODEL_PATH"
].
as
<
std
::
string
>
();
}
else
{
std
::
cerr
<<
"Please set MODEL_PATH:
\"
/path/to/model_dir
\"
"
<<
std
::
endl
;
return
false
;
}
// 8. get model file_name
_model_file_name
=
config
[
"DEPLOY"
][
"MODEL_FILENAME"
].
as
<
std
::
string
>
();
if
(
config
[
"DEPLOY"
][
"MODEL_FILENAME"
].
IsDefined
())
{
_model_file_name
=
config
[
"DEPLOY"
][
"MODEL_FILENAME"
].
as
<
std
::
string
>
();
}
else
{
_model_file_name
=
"__model__"
;
}
// 9. get model param file name
_param_file_name
=
config
[
"DEPLOY"
][
"PARAMS_FILENAME"
].
as
<
std
::
string
>
();
if
(
config
[
"DEPLOY"
][
"PARAMS_FILENAME"
].
IsDefined
())
{
_param_file_name
=
config
[
"DEPLOY"
][
"PARAMS_FILENAME"
].
as
<
std
::
string
>
();
}
else
{
_param_file_name
=
"__params__"
;
}
// 10. get pre_processor
_pre_processor
=
config
[
"DEPLOY"
][
"PRE_PROCESSOR"
].
as
<
std
::
string
>
();
if
(
config
[
"DEPLOY"
][
"PRE_PROCESSOR"
].
IsDefined
())
{
_pre_processor
=
config
[
"DEPLOY"
][
"PRE_PROCESSOR"
].
as
<
std
::
string
>
();
}
else
{
std
::
cerr
<<
"Please set PRE_PROCESSOR:
\"
DetectionPreProcessor
\"
"
<<
std
::
endl
;
return
false
;
}
// 11. use_gpu
_use_gpu
=
config
[
"DEPLOY"
][
"USE_GPU"
].
as
<
int
>
();
if
(
config
[
"DEPLOY"
][
"USE_GPU"
].
IsDefined
())
{
_use_gpu
=
config
[
"DEPLOY"
][
"USE_GPU"
].
as
<
int
>
();
}
else
{
_use_gpu
=
0
;
}
// 12. predictor_mode
_predictor_mode
=
config
[
"DEPLOY"
][
"PREDICTOR_MODE"
].
as
<
std
::
string
>
();
if
(
config
[
"DEPLOY"
][
"PREDICTOR_MODE"
].
IsDefined
())
{
_predictor_mode
=
config
[
"DEPLOY"
][
"PREDICTOR_MODE"
].
as
<
std
::
string
>
();
}
else
{
std
::
cerr
<<
"Please set PREDICTOR_MODE:
\"
NATIVE
\"
or
\"
ANALYSIS
\"
"
<<
std
::
endl
;
return
false
;
}
// 13. batch_size
_batch_size
=
config
[
"DEPLOY"
][
"BATCH_SIZE"
].
as
<
int
>
();
if
(
config
[
"DEPLOY"
][
"BATCH_SIZE"
].
IsDefined
())
{
_batch_size
=
config
[
"DEPLOY"
][
"BATCH_SIZE"
].
as
<
int
>
();
}
else
{
_batch_size
=
1
;
}
// 14. channels
_channels
=
config
[
"DEPLOY"
][
"CHANNELS"
].
as
<
int
>
();
if
(
config
[
"DEPLOY"
][
"CHANNELS"
].
IsDefined
())
{
_channels
=
config
[
"DEPLOY"
][
"CHANNELS"
].
as
<
int
>
();
}
else
{
std
::
cerr
<<
"Please set CHANNELS: x"
<<
std
::
endl
;
return
false
;
}
return
true
;
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录