提交 30ec28bc 编写于 作者: M michaelowenliu

Merge branch 'develop' of https://github.com/michaelowenliu/PaddleSeg into temp

Conflicts:
	dygraph/models/__init__.py
	dygraph/models/pspnet.py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import fluid, nn
from dygraph.cvlibs import manager
from dygraph.models import model_utils, pspnet
from dygraph.models.architectures import layer_utils
@manager.MODELS.add_component
class FastSCNN(fluid.dygraph.Layer):
"""
The FastSCNN implementation.
As mentioned in original paper, FastSCNN is a real-time segmentation algorithm (123.5fps)
even for high resolution images (1024x2048).
The orginal artile refers to
Poudel, Rudra PK, et al. "Fast-scnn: Fast semantic segmentation network."
(https://arxiv.org/pdf/1902.04502.pdf)
Args:
num_classes (int): the unique number of target classes. Default to 2.
enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss.
if true, auxiliary loss will be added after LearningToDownsample module, where the weight is 0.4. Default to False.
ignore_index (int): the value of ground-truth mask would be ignored while doing evaluation. Default to 255.
"""
def __init__(self,
num_classes=2,
enable_auxiliary_loss=False,
ignore_index=255):
super(FastSCNN, self).__init__()
self.learning_to_downsample = LearningToDownsample(32, 48, 64)
self.global_feature_extractor = GlobalFeatureExtractor(64, [64, 96, 128], 128, 6, [3, 3, 3])
self.feature_fusion = FeatureFusionModule(64, 128, 128)
self.classifier = Classifier(128, num_classes)
if enable_auxiliary_loss:
self.auxlayer = model_utils.AuxLayer(64, 32, num_classes)
self.enable_auxiliary_loss = enable_auxiliary_loss
self.ignore_index = ignore_index
def forward(self, input, label=None):
higher_res_features = self.learning_to_downsample(input)
x = self.global_feature_extractor(higher_res_features)
x = self.feature_fusion(higher_res_features, x)
logit = self.classifier(x)
logit = fluid.layers.resize_bilinear(logit, input.shape[2:])
if self.enable_auxiliary_loss:
auxiliary_logit = self.auxlayer(higher_res_features)
auxiliary_logit = fluid.layers.resize_bilinear(auxiliary_logit, input.shape[2:])
if self.training:
loss = model_utils.get_loss(logit, label)
if self.enable_auxiliary_loss:
auxiliary_loss = model_utils.get_loss(auxiliary_logit, label)
loss += (0.4 * auxiliary_loss)
return loss
else:
pred, score_map = model_utils.get_pred_score_map(logit)
return pred, score_map
class LearningToDownsample(fluid.dygraph.Layer):
"""
Learning to downsample module.
This module consists of three downsampling blocks (one Conv and two separable Conv)
Args:
dw_channels1 (int): the input channels of the first sep conv. Default to 32.
dw_channels2 (int): the input channels of the second sep conv. Default to 48.
out_channels (int): the output channels of LearningToDownsample module. Default to 64.
"""
def __init__(self, dw_channels1=32, dw_channels2=48, out_channels=64):
super(LearningToDownsample, self).__init__()
self.conv_bn_relu = layer_utils.ConvBnRelu(num_channels=3,
num_filters=dw_channels1,
filter_size=3,
stride=2)
self.dsconv_bn_relu1 = layer_utils.ConvBnRelu(num_channels=dw_channels1,
num_filters=dw_channels2,
filter_size=3,
using_sep_conv=True, # using sep conv
stride=2,
padding=1)
self.dsconv_bn_relu2 = layer_utils.ConvBnRelu(num_channels=dw_channels2,
num_filters=out_channels,
filter_size=3,
using_sep_conv=True, # using sep conv
stride=2,
padding=1)
def forward(self, x):
x = self.conv_bn_relu(x)
x = self.dsconv_bn_relu1(x)
x = self.dsconv_bn_relu2(x)
return x
class GlobalFeatureExtractor(fluid.dygraph.Layer):
"""
Global feature extractor module
This module consists of three LinearBottleneck blocks (like inverted residual introduced by MobileNetV2) and
a PPModule (introduced by PSPNet).
Args:
in_channels (int): the number of input channels to the module. Default to 64.
block_channels (tuple): a tuple represents output channels of each bottleneck block. Default to (64, 96, 128).
out_channels (int): the number of output channels of the module. Default to 128.
expansion (int): the expansion factor in bottleneck. Default to 6.
num_blocks (tuple): it indicates the repeat time of each bottleneck. Default to (3, 3, 3).
"""
def __init__(self, in_channels=64, block_channels=(64, 96, 128),
out_channels=128, expansion=6, num_blocks=(3, 3, 3)):
super(GlobalFeatureExtractor, self).__init__()
self.bottleneck1 = self._make_layer(LinearBottleneck, in_channels, block_channels[0], num_blocks[0], expansion,
2)
self.bottleneck2 = self._make_layer(LinearBottleneck, block_channels[0], block_channels[1], num_blocks[1],
expansion, 2)
self.bottleneck3 = self._make_layer(LinearBottleneck, block_channels[1], block_channels[2], num_blocks[2],
expansion, 1)
self.ppm = pspnet.PPModule(block_channels[2], out_channels, dim_reduction=True)
def _make_layer(self, block, in_channels, out_channels, blocks, expansion=6, stride=1):
layers = []
layers.append(block(in_channels, out_channels, expansion, stride))
for i in range(1, blocks):
layers.append(block(out_channels, out_channels, expansion, 1))
return nn.Sequential(*layers)
def forward(self, x):
x = self.bottleneck1(x)
x = self.bottleneck2(x)
x = self.bottleneck3(x)
x = self.ppm(x)
return x
class LinearBottleneck(fluid.dygraph.Layer):
"""
Single bottleneck implementation.
Args:
in_channels (int): the number of input channels to bottleneck block.
out_channels (int): the number of output channels of bottleneck block.
expansion (int). the expansion factor in bottleneck. Default to 6.
stride (int). the stride used in depth-wise conv.
"""
def __init__(self, in_channels, out_channels, expansion=6, stride=2, **kwargs):
super(LinearBottleneck, self).__init__()
self.use_shortcut = stride == 1 and in_channels == out_channels
expand_channels = in_channels * expansion
self.block = nn.Sequential(
# pw
layer_utils.ConvBnRelu(num_channels=in_channels,
num_filters=expand_channels,
filter_size=1,
bias_attr=False),
# dw
layer_utils.ConvBnRelu(num_channels=expand_channels,
num_filters=expand_channels,
filter_size=3,
stride=stride,
padding=1,
groups=expand_channels,
bias_attr=False),
# pw-linear
nn.Conv2D(num_channels=expand_channels,
num_filters=out_channels,
filter_size=1,
bias_attr=False),
nn.BatchNorm(out_channels)
)
def forward(self, x):
out = self.block(x)
if self.use_shortcut:
out = x + out
return out
class FeatureFusionModule(fluid.dygraph.Layer):
"""
Feature Fusion Module Implememtation.
This module fuses high-resolution feature and low-resolution feature.
Args:
high_in_channels (int): the channels of high-resolution feature (output of LearningToDownsample).
low_in_channels (int). the channels of low-resolution feature (output of GlobalFeatureExtractor).
out_channels (int). the output channels of this module.
"""
def __init__(self, high_in_channels, low_in_channels, out_channels):
super(FeatureFusionModule, self).__init__()
# There only depth-wise conv is used WITHOUT point-sied conv
self.dwconv = layer_utils.ConvBnRelu(num_channels=low_in_channels,
num_filters=out_channels,
filter_size=3,
padding=1,
groups=128)
self.conv_low_res = nn.Sequential(
nn.Conv2D(num_channels=out_channels, num_filters=out_channels, filter_size=1),
nn.BatchNorm(out_channels))
self.conv_high_res = nn.Sequential(
nn.Conv2D(num_channels=high_in_channels, num_filters=out_channels, filter_size=1),
nn.BatchNorm(out_channels))
self.relu = nn.ReLU(True)
def forward(self, high_res_input, low_res_input):
low_res_input = fluid.layers.resize_bilinear(input=low_res_input, scale=4)
low_res_input = self.dwconv(low_res_input)
low_res_input = self.conv_low_res(low_res_input)
high_res_input = self.conv_high_res(high_res_input)
x = high_res_input + low_res_input
return self.relu(x)
class Classifier(fluid.dygraph.Layer):
"""
The Classifier module implemetation.
This module consists of two depth-wsie conv and one conv.
Args:
input_channels (int): the input channels to this module.
num_classes (int). the unique number of target classes.
"""
def __init__(self, input_channels, num_classes):
super(Classifier, self).__init__()
self.dsconv1 = layer_utils.ConvBnRelu(num_channels=input_channels,
num_filters=input_channels,
filter_size=3,
using_sep_conv=True # using sep conv
)
self.dsconv2 = layer_utils.ConvBnRelu(num_channels=input_channels,
num_filters=input_channels,
filter_size=3,
using_sep_conv=True # using sep conv
)
self.conv = nn.Conv2D(num_channels=input_channels,
num_filters=num_classes,
filter_size=1)
def forward(self, x):
x = self.dsconv1(x)
x = self.dsconv2(x)
x = fluid.layers.dropout(x, dropout_prob=0.1)
x = self.conv(x)
return x
......@@ -18,7 +18,8 @@ import paddle.nn.functional as F
from paddle import fluid
from paddle.fluid import dygraph
from paddle.fluid.dygraph import Conv2D
from paddle.nn import SyncBatchNorm as BatchNorm
#from paddle.nn import SyncBatchNorm as BatchNorm
from paddle.fluid.dygraph import SyncBatchNorm as BatchNorm
from dygraph.models.architectures import layer_utils
......@@ -47,10 +48,37 @@ class FCNHead(fluid.dygraph.Layer):
def forward(self, x):
x = self.conv_bn_relu(x)
x = F.dropout(x, p=0.1)
x = F.dropout(x, dropout_prob=0.1)
x = self.conv(x)
return x
class AuxLayer(fluid.dygraph.Layer):
"""
The auxilary layer implementation for auxilary loss
Args:
in_channels (int): the number of input channels.
inter_channels (int): intermediate channels.
out_channels (int): the number of output channels, which is usually num_classes.
"""
def __init__(self, in_channels, inter_channels, out_channels):
super(AuxLayer, self).__init__()
self.conv_bn_relu = layer_utils.ConvBnRelu(num_channels=in_channels,
num_filters=inter_channels,
filter_size=3,
padding=1)
self.conv = Conv2D(num_channels=inter_channels,
num_filters=out_channels,
filter_size=1)
def forward(self, x):
x = self.conv_bn_relu(x)
x = F.dropout(x, dropout_prob=0.1)
x = self.conv(x)
return x
def get_loss(logit, label, ignore_index=255, EPS=1e-5):
"""
......
......@@ -148,23 +148,27 @@ class PPModule(fluid.dygraph.Layer):
out_channels (int): the number of output channels after pyramid pooling module.
bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
dim_reduction (bool): a bool value represent if reduing dimention after pooling. Default to True.
"""
def __init__(self, in_channels, out_channels, bin_sizes=(1, 2, 3, 6)):
def __init__(self, in_channels, out_channels, bin_sizes=(1, 2, 3, 6), dim_reduction=True):
super(PPModule, self).__init__()
self.bin_sizes = bin_sizes
inter_channels = in_channels
if dim_reduction:
inter_channels = in_channels // len(bin_sizes)
# we use dimension reduction after pooling mentioned in original implementation.
self.stages = fluid.dygraph.LayerList(
[self._make_stage(in_channels, size) for size in bin_sizes])
self.stages = fluid.dygraph.LayerList([self._make_stage(in_channels, inter_channels, size) for size in bin_sizes])
self.conv_bn_relu2 = layer_utils.ConvBnRelu(
num_channels=in_channels * 2,
num_filters=out_channels,
filter_size=3,
padding=1)
self.conv_bn_relu2 = layer_utils.ConvBnRelu(num_channels=in_channels + inter_channels * len(bin_sizes),
num_filters=out_channels,
filter_size=3,
padding=1)
def _make_stage(self, in_channels, size):
def _make_stage(self, in_channels, out_channels, size):
"""
Create one pooling layer.
......@@ -186,10 +190,9 @@ class PPModule(fluid.dygraph.Layer):
# this paddle version does not support AdaptiveAvgPool2d, so skip it here.
# prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv = layer_utils.ConvBnRelu(
num_channels=in_channels,
num_filters=in_channels // len(self.bin_sizes),
filter_size=1)
conv = layer_utils.ConvBnRelu(num_channels=in_channels,
num_filters=out_channels,
filter_size=1)
return conv
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册