未验证 提交 2ea481f5 编写于 作者: W wuzewu 提交者: GitHub

Merge pull request #361 from michaelowenliu/develop

......@@ -13,7 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from collections.abc import Sequence
import inspect
......@@ -98,13 +98,14 @@ class ComponentManager:
"""
# Check whether the type is a sequence
if isinstance(components, collections.Sequence):
if isinstance(components, Sequence):
for component in components:
self._add_single_component(component)
else:
component = components
self._add_single_component(component)
return components
MODELS = ComponentManager()
BACKBONES = ComponentManager()
\ No newline at end of file
......@@ -16,3 +16,4 @@ from .architectures import *
from .unet import UNet
from .deeplab import *
from .fcn import *
from .pspnet import *
......@@ -13,24 +13,22 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.nn.functional as F
from paddle import fluid
from paddle.fluid import dygraph
from paddle.fluid.dygraph import Conv2D
from paddle.fluid.dygraph import SyncBatchNorm as BatchNorm
import cv2
import os
import sys
from paddle.nn import SyncBatchNorm as BatchNorm
from paddle.nn.layer import activation
class ConvBnRelu(dygraph.Layer):
def __init__(self,
num_channels,
num_filters,
filter_size,
using_sep_conv=False,
**kwargs):
super(ConvBnRelu, self).__init__()
if using_sep_conv:
......@@ -41,16 +39,16 @@ class ConvBnRelu(dygraph.Layer):
else:
self.conv = Conv2D(num_channels,
num_filters,
filter_size,
**kwargs)
num_filters,
filter_size,
**kwargs)
self.batch_norm = BatchNorm(num_filters)
def forward(self, x):
x = self.conv(x)
x = self.batch_norm(x)
x = fluid.layers.relu(x)
x = F.relu(x)
return x
......@@ -81,7 +79,7 @@ class ConvReluPool(dygraph.Layer):
def forward(self, x):
x = self.conv(x)
x = fluid.layers.relu(x)
x = F.relu(x)
x = fluid.layers.pool2d(x, pool_size=2, pool_type="max", pool_stride=2)
return x
......@@ -106,15 +104,15 @@ class DepthwiseConvBnRelu(dygraph.Layer):
**kwargs):
super(DepthwiseConvBnRelu, self).__init__()
self.depthwise_conv = ConvBn(num_channels,
num_filters=num_channels,
filter_size=filter_size,
groups=num_channels,
use_cudnn=False,
**kwargs)
num_filters=num_channels,
filter_size=filter_size,
groups=num_channels,
use_cudnn=False,
**kwargs)
self.piontwise_conv = ConvBnRelu(num_channels,
num_filters,
filter_size=1,
groups=1)
num_filters,
filter_size=1,
groups=1)
def forward(self, x):
x = self.depthwise_conv(x)
......@@ -122,20 +120,43 @@ class DepthwiseConvBnRelu(dygraph.Layer):
return x
def compute_loss(logits, label, ignore_index=255):
mask = label != ignore_index
mask = fluid.layers.cast(mask, 'float32')
loss, probs = fluid.layers.softmax_with_cross_entropy(
logits,
label,
ignore_index=ignore_index,
return_softmax=True,
axis=1)
class Activation(fluid.dygraph.Layer):
"""
The wrapper of activations
For example:
>>> relu = Activation("relu")
>>> print(relu)
<class 'paddle.nn.layer.activation.ReLU'>
>>> sigmoid = Activation("sigmoid")
>>> print(sigmoid)
<class 'paddle.nn.layer.activation.Sigmoid'>
>>> not_exit_one = Activation("not_exit_one")
KeyError: "not_exit_one does not exist in the current dict_keys(['elu', 'gelu', 'hardshrink',
'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax',
'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid'])"
Args:
act (str): the activation name in lowercase
"""
def __init__(self, act=None):
super(Activation, self).__init__()
self._act = act
upper_act_names = activation.__all__
lower_act_names = [act.lower() for act in upper_act_names]
act_dict = dict(zip(lower_act_names, upper_act_names))
if act is not None:
if act in act_dict.keys():
act_name = act_dict[act]
self.act_func = eval("activation.{}()".format(act_name))
else:
raise KeyError("{} does not exist in the current {}".format(act, act_dict.keys()))
loss = loss * mask
avg_loss = fluid.layers.mean(loss) / (
fluid.layers.mean(mask) + 1e-5)
def forward(self, x):
label.stop_gradient = True
mask.stop_gradient = True
return avg_loss
\ No newline at end of file
if self._act is not None:
return self.act_func(x)
else:
return x
\ No newline at end of file
......@@ -16,15 +16,17 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
import math
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
from paddle.nn import SyncBatchNorm as BatchNorm
from dygraph.models.architectures import layer_utils
from dygraph.cvlibs import manager
__all__ = [
......@@ -251,19 +253,18 @@ class ConvBNLayer(fluid.dygraph.Layer):
bias_attr=False,
use_cudnn=use_cudnn,
act=None)
self.bn = fluid.dygraph.BatchNorm(
num_channels=out_c,
act=None,
param_attr=ParamAttr(
self.bn = BatchNorm(
num_features=out_c,
weight_attr=ParamAttr(
name=name + "_bn_scale",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
bias_attr=ParamAttr(
name=name + "_bn_offset",
regularizer=fluid.regularizer.L2DecayRegularizer(
regularization_coeff=0.0)),
moving_mean_name=name + "_bn_mean",
moving_variance_name=name + "_bn_variance")
regularization_coeff=0.0)))
self._act_op = layer_utils.Activation(act=None)
def forward(self, x):
x = self.conv(x)
......
......@@ -24,10 +24,11 @@ import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
from paddle.nn import SyncBatchNorm as BatchNorm
from dygraph.utils import utils
from dygraph.models.architectures import layer_utils
from dygraph.cvlibs import manager
__all__ = [
......@@ -69,17 +70,17 @@ class ConvBNLayer(fluid.dygraph.Layer):
bn_name = "bn" + name[3:]
self._batch_norm = BatchNorm(
num_filters,
act=act,
param_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'),
moving_mean_name=bn_name + '_mean',
moving_variance_name=bn_name + '_variance')
weight_attr=ParamAttr(name=bn_name + '_scale'),
bias_attr=ParamAttr(bn_name + '_offset'))
self._act_op = layer_utils.Activation(act=act)
def forward(self, inputs):
if self.is_vd_mode:
inputs = self._pool2d_avg(inputs)
y = self._conv(inputs)
y = self._batch_norm(y)
y = self._act_op(y)
return y
......
......@@ -2,8 +2,10 @@ import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, BatchNorm, Linear, Dropout
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
from paddle.nn import SyncBatchNorm as BatchNorm
from dygraph.models.architectures import layer_utils
from dygraph.cvlibs import manager
__all__ = ["Xception41_deeplab", "Xception65_deeplab", "Xception71_deeplab"]
......@@ -79,17 +81,17 @@ class ConvBNLayer(fluid.dygraph.Layer):
param_attr=ParamAttr(name=name + "/weights"),
bias_attr=False)
self._bn = BatchNorm(
num_channels=output_channels,
act=act,
num_features=output_channels,
epsilon=1e-3,
momentum=0.99,
param_attr=ParamAttr(name=name + "/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/BatchNorm/beta"),
moving_mean_name=name + "/BatchNorm/moving_mean",
moving_variance_name=name + "/BatchNorm/moving_variance")
weight_attr=ParamAttr(name=name + "/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/BatchNorm/beta"))
self._act_op = layer_utils.Activation(act=act)
def forward(self, inputs):
return self._bn(self._conv(inputs))
return self._act_op(self._bn(self._conv(inputs)))
class Seperate_Conv(fluid.dygraph.Layer):
......@@ -115,13 +117,13 @@ class Seperate_Conv(fluid.dygraph.Layer):
bias_attr=False)
self._bn1 = BatchNorm(
input_channels,
act=act,
epsilon=1e-3,
momentum=0.99,
param_attr=ParamAttr(name=name + "/depthwise/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/depthwise/BatchNorm/beta"),
moving_mean_name=name + "/depthwise/BatchNorm/moving_mean",
moving_variance_name=name + "/depthwise/BatchNorm/moving_variance")
weight_attr=ParamAttr(name=name + "/depthwise/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/depthwise/BatchNorm/beta"))
self._act_op1 = layer_utils.Activation(act=act)
self._conv2 = Conv2D(
input_channels,
output_channels,
......@@ -133,19 +135,21 @@ class Seperate_Conv(fluid.dygraph.Layer):
bias_attr=False)
self._bn2 = BatchNorm(
output_channels,
act=act,
epsilon=1e-3,
momentum=0.99,
param_attr=ParamAttr(name=name + "/pointwise/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/pointwise/BatchNorm/beta"),
moving_mean_name=name + "/pointwise/BatchNorm/moving_mean",
moving_variance_name=name + "/pointwise/BatchNorm/moving_variance")
weight_attr=ParamAttr(name=name + "/pointwise/BatchNorm/gamma"),
bias_attr=ParamAttr(name=name + "/pointwise/BatchNorm/beta"))
self._act_op2 = layer_utils.Activation(act=act)
def forward(self, inputs):
x = self._conv1(inputs)
x = self._bn1(x)
x = self._act_op1(x)
x = self._conv2(x)
x = self._bn2(x)
x = self._act_op2(x)
return x
......
# -*- encoding: utf-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import fluid
from paddle.fluid import dygraph
from paddle.fluid.dygraph import Conv2D
from paddle.nn import SyncBatchNorm as BatchNorm
from dygraph.models.architectures import layer_utils
class FCNHead(fluid.dygraph.Layer):
"""
The FCNHead implementation used in auxilary layer
Args:
in_channels (int): the number of input channels
out_channels (int): the number of output channels
"""
def __init__(self, in_channels, out_channels):
super(FCNHead, self).__init__()
inter_channels = in_channels // 4
self.conv_bn_relu = layer_utils.ConvBnRelu(num_channels=in_channels,
num_filters=inter_channels,
filter_size=3,
padding=1)
self.conv = Conv2D(num_channels=inter_channels,
num_filters=out_channels,
filter_size=1)
def forward(self, x):
x = self.conv_bn_relu(x)
x = F.dropout(x, p=0.1)
x = self.conv(x)
return x
def get_loss(logit, label, ignore_index=255, EPS=1e-5):
"""
compute forward loss of the model
Args:
logit (tensor): the logit of model output
label (tensor): ground truth
Returns:
avg_loss (tensor): forward loss
"""
logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
label = fluid.layers.transpose(label, [0, 2, 3, 1])
mask = label != ignore_index
mask = fluid.layers.cast(mask, 'float32')
loss, probs = fluid.layers.softmax_with_cross_entropy(
logit,
label,
ignore_index=ignore_index,
return_softmax=True,
axis=-1)
loss = loss * mask
avg_loss = paddle.mean(loss) / (paddle.mean(mask) + EPS)
label.stop_gradient = True
mask.stop_gradient = True
return avg_loss
def get_pred_score_map(logit):
"""
Get prediction and score map output in inference phase.
Args:
logit (tensor): output logit of network
Returns:
pred (tensor): predition map
score_map (tensor): score map
"""
score_map = F.softmax(logit, axis=1)
score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1])
pred = fluid.layers.argmax(score_map, axis=3)
pred = fluid.layers.unsqueeze(pred, axes=[3])
return pred, score_map
\ No newline at end of file
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle.nn.functional as F
from paddle import fluid
from paddle.fluid.dygraph import Conv2D
from dygraph.cvlibs import manager
from dygraph.models import model_utils
from dygraph.models.architectures import layer_utils
from dygraph.utils import utils
class PSPNet(fluid.dygraph.Layer):
"""
The PSPNet implementation
The orginal artile refers to
Zhao, Hengshuang, et al. "Pyramid scene parsing network."
Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
(https://openaccess.thecvf.com/content_cvpr_2017/papers/Zhao_Pyramid_Scene_Parsing_CVPR_2017_paper.pdf)
Args:
backbone (str): backbone name, currently support Resnet50/101.
num_classes (int): the unique number of target classes. Default 2.
output_stride (int): the ratio of input size and final feature size. Default 16.
backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
the first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of Pyramid Pooling Module (PPModule).
Usually backbone consists of four downsampling stage, and return an output of
each stage, so we set default (2, 3), which means taking feature map of the third
stage (res4b22) in backbone, and feature map of the fourth stage (res5c) as input of PPModule.
backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
pp_out_channels (int): output channels after Pyramid Pooling Module. Default to 1024.
bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss. Default to True.
ignore_index (int): the value of ground-truth mask would be ignored while doing evaluation. Default to 255.
pretrained_model (str): the pretrained_model path of backbone.
"""
def __init__(self,
backbone,
num_classes=2,
output_stride=16,
backbone_indices=(2, 3),
backbone_channels=(1024, 2048),
pp_out_channels=1024,
bin_sizes=(1, 2, 3, 6),
enable_auxiliary_loss=True,
ignore_index=255,
pretrained_model=None):
super(PSPNet, self).__init__()
self.backbone = manager.BACKBONES[backbone](output_stride=output_stride,
multi_grid=(1, 1, 1))
self.backbone_indices = backbone_indices
self.psp_module = PPModule(in_channels=backbone_channels[1],
out_channels=pp_out_channels,
bin_sizes=bin_sizes)
self.conv = Conv2D(num_channels=pp_out_channels,
num_filters=num_classes,
filter_size=1)
if enable_auxiliary_loss:
self.fcn_head = model_utils.FCNHead(in_channels=backbone_channels[0], out_channels=num_classes)
self.enable_auxiliary_loss = enable_auxiliary_loss
self.ignore_index = ignore_index
self.init_weight(pretrained_model)
def forward(self, input, label=None):
_, feat_list = self.backbone(input)
x = feat_list[self.backbone_indices[1]]
x = self.psp_module(x)
x = F.dropout(x, dropout_prob=0.1)
logit = self.conv(x)
logit = fluid.layers.resize_bilinear(logit, input.shape[2:])
if self.enable_auxiliary_loss:
auxiliary_feat = feat_list[self.backbone_indices[0]]
auxiliary_logit = self.fcn_head(auxiliary_feat)
auxiliary_logit = fluid.layers.resize_bilinear(auxiliary_logit, input.shape[2:])
if self.training:
loss = model_utils.get_loss(logit, label)
if self.enable_auxiliary_loss:
auxiliary_loss = model_utils.get_loss(auxiliary_logit, label)
loss += (0.4 * auxiliary_loss)
return loss
else:
pred, score_map = model_utils.get_pred_score_map(logit)
return pred, score_map
def init_weight(self, pretrained_model=None):
"""
Initialize the parameters of model parts.
Args:
pretrained_model ([str], optional): the pretrained_model path of backbone. Defaults to None.
"""
if pretrained_model is not None:
if os.path.exists(pretrained_model):
utils.load_pretrained_model(self.backbone, pretrained_model)
class PPModule(fluid.dygraph.Layer):
"""
Pyramid pooling module
Args:
in_channels (int): the number of intput channels to pyramid pooling module.
out_channels (int): the number of output channels after pyramid pooling module.
bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
"""
def __init__(self, in_channels, out_channels, bin_sizes=(1, 2, 3, 6)):
super(PPModule, self).__init__()
self.bin_sizes = bin_sizes
# we use dimension reduction after pooling mentioned in original implementation.
self.stages = fluid.dygraph.LayerList([self._make_stage(in_channels, size) for size in bin_sizes])
self.conv_bn_relu2 = layer_utils.ConvBnRelu(num_channels=in_channels * 2,
num_filters=out_channels,
filter_size=3,
padding=1)
def _make_stage(self, in_channels, size):
"""
Create one pooling layer.
In our implementation, we adopt the same dimention reduction as the original paper that might be
slightly different with other implementations.
After pooling, the channels are reduced to 1/len(bin_sizes) immediately, while some other implementations
keep the channels to be same.
Args:
in_channels (int): the number of intput channels to pyramid pooling module.
size (int): the out size of the pooled layer.
Returns:
conv (tensor): a tensor after Pyramid Pooling Module
"""
# this paddle version does not support AdaptiveAvgPool2d, so skip it here.
# prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
conv = layer_utils.ConvBnRelu(num_channels=in_channels,
num_filters=in_channels // len(self.bin_sizes),
filter_size=1)
return conv
def forward(self, input):
cat_layers = []
for i, stage in enumerate(self.stages):
size = self.bin_sizes[i]
x = fluid.layers.adaptive_pool2d(input, pool_size=(size, size), pool_type="max")
x = stage(x)
x = fluid.layers.resize_bilinear(x, out_shape=input.shape[2:])
cat_layers.append(x)
cat_layers = [input] + cat_layers[::-1]
cat = fluid.layers.concat(cat_layers, axis=1)
out = self.conv_bn_relu2(cat)
return out
@manager.MODELS.add_component
def pspnet_resnet101_vd(*args, **kwargs):
pretrained_model = None
return PSPNet(backbone='ResNet101_vd', pretrained_model=pretrained_model, **kwargs)
@manager.MODELS.add_component
def pspnet_resnet101_vd_os8(*args, **kwargs):
pretrained_model = None
return PSPNet(backbone='ResNet101_vd', output_stride=8, pretrained_model=pretrained_model, **kwargs)
@manager.MODELS.add_component
def pspnet_resnet50_vd(*args, **kwargs):
pretrained_model = None
return PSPNet(backbone='ResNet50_vd', pretrained_model=pretrained_model, **kwargs)
@manager.MODELS.add_component
def pspnet_resnet50_vd_os8(*args, **kwargs):
pretrained_model = None
return PSPNet(backbone='ResNet50_vd', output_stride=8, pretrained_model=pretrained_model, **kwargs)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册