Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleSeg
提交
1e810160
P
PaddleSeg
项目概览
PaddlePaddle
/
PaddleSeg
通知
285
Star
8
Fork
1
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
53
列表
看板
标记
里程碑
合并请求
3
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleSeg
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
53
Issue
53
列表
看板
标记
里程碑
合并请求
3
合并请求
3
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1e810160
编写于
7月 08, 2020
作者:
C
chenguowei01
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/PaddleSeg
into develop
上级
9e1332e6
24856d05
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
669 addition
and
127 deletion
+669
-127
configs/deeplabv3p_mobilenetv3_large_cityscapes.yaml
configs/deeplabv3p_mobilenetv3_large_cityscapes.yaml
+57
-0
pdseg/models/backbone/mobilenet_v3.py
pdseg/models/backbone/mobilenet_v3.py
+363
-0
pdseg/models/libs/model_libs.py
pdseg/models/libs/model_libs.py
+4
-0
pdseg/models/modeling/deeplab.py
pdseg/models/modeling/deeplab.py
+225
-122
pdseg/utils/config.py
pdseg/utils/config.py
+16
-5
pretrained_model/download_model.py
pretrained_model/download_model.py
+4
-0
未找到文件。
configs/deeplabv3p_mobilenetv3_large_cityscapes.yaml
0 → 100644
浏览文件 @
1e810160
EVAL_CROP_SIZE
:
(2049, 1025)
# (width, height), for unpadding rangescaling and stepscaling
TRAIN_CROP_SIZE
:
(769, 769)
# (width, height), for unpadding rangescaling and stepscaling
AUG
:
AUG_METHOD
:
"
stepscaling"
# choice unpadding rangescaling and stepscaling
MAX_SCALE_FACTOR
:
2.0
# for stepscaling
MIN_SCALE_FACTOR
:
0.5
# for stepscaling
SCALE_STEP_SIZE
:
0.25
# for stepscaling
MIRROR
:
True
BATCH_SIZE
:
32
DATASET
:
DATA_DIR
:
"
./dataset/cityscapes/"
IMAGE_TYPE
:
"
rgb"
# choice rgb or rgba
NUM_CLASSES
:
19
TEST_FILE_LIST
:
"
dataset/cityscapes/val.list"
TRAIN_FILE_LIST
:
"
dataset/cityscapes/train.list"
VAL_FILE_LIST
:
"
dataset/cityscapes/val.list"
IGNORE_INDEX
:
255
SEPARATOR
:
"
"
FREEZE
:
MODEL_FILENAME
:
"
model"
PARAMS_FILENAME
:
"
params"
MODEL
:
DEFAULT_NORM_TYPE
:
"
bn"
MODEL_NAME
:
"
deeplabv3p"
DEEPLAB
:
BACKBONE
:
"
mobilenetv3_large"
ASPP_WITH_SEP_CONV
:
True
DECODER_USE_SEP_CONV
:
True
ENCODER_WITH_ASPP
:
True
ENABLE_DECODER
:
True
OUTPUT_STRIDE
:
32
BACKBONE_LR_MULT_LIST
:
[
0.15
,
0.35
,
0.65
,
0.85
,
1
]
ENCODER
:
POOLING_STRIDE
:
(4, 5)
POOLING_CROP_SIZE
:
(769, 769)
ASPP_WITH_SE
:
True
SE_USE_QSIGMOID
:
True
ASPP_CONVS_FILTERS
:
128
ASPP_WITH_CONCAT_PROJECTION
:
False
ADD_IMAGE_LEVEL_FEATURE
:
False
DECODER
:
USE_SUM_MERGE
:
True
CONV_FILTERS
:
19
OUTPUT_IS_LOGITS
:
True
TRAIN
:
PRETRAINED_MODEL_DIR
:
u"pretrained_model/mobilenetv3-1-0_large_bn_imagenet"
MODEL_SAVE_DIR
:
"
saved_model/deeplabv3p_mobilenetv3_large_cityscapes"
SNAPSHOT_EPOCH
:
1
SYNC_BATCH_NORM
:
True
TEST
:
TEST_MODEL
:
"
saved_model/deeplabv3p_mobilenetv3_large_cityscapes/final"
SOLVER
:
LR
:
0.2
LR_POLICY
:
"
poly"
OPTIMIZER
:
"
sgd"
NUM_EPOCHS
:
850
pdseg/models/backbone/mobilenet_v3.py
0 → 100644
浏览文件 @
1e810160
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
from
paddle.fluid.param_attr
import
ParamAttr
__all__
=
[
'MobileNetV3'
,
'MobileNetV3_small_x0_35'
,
'MobileNetV3_small_x0_5'
,
'MobileNetV3_small_x0_75'
,
'MobileNetV3_small_x1_0'
,
'MobileNetV3_small_x1_25'
,
'MobileNetV3_large_x0_35'
,
'MobileNetV3_large_x0_5'
,
'MobileNetV3_large_x0_75'
,
'MobileNetV3_large_x1_0'
,
'MobileNetV3_large_x1_25'
]
class
MobileNetV3
():
def
__init__
(
self
,
scale
=
1.0
,
model_name
=
'small'
,
lr_mult_list
=
[
1.0
,
1.0
,
1.0
,
1.0
,
1.0
],
output_stride
=
None
):
self
.
scale
=
scale
self
.
inplanes
=
16
self
.
lr_mult_list
=
lr_mult_list
assert
len
(
self
.
lr_mult_list
)
==
5
,
\
"lr_mult_list length in MobileNetV3 must be 5 but got {}!!"
.
format
(
len
(
self
.
lr_mult_list
))
self
.
curr_stage
=
0
self
.
decode_point
=
None
self
.
end_point
=
None
if
model_name
==
"large"
:
self
.
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
False
,
'relu'
,
1
],
[
3
,
64
,
24
,
False
,
'relu'
,
2
],
[
3
,
72
,
24
,
False
,
'relu'
,
1
],
[
5
,
72
,
40
,
True
,
'relu'
,
2
],
[
5
,
120
,
40
,
True
,
'relu'
,
1
],
[
5
,
120
,
40
,
True
,
'relu'
,
1
],
[
3
,
240
,
80
,
False
,
'hard_swish'
,
2
],
[
3
,
200
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
184
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
184
,
80
,
False
,
'hard_swish'
,
1
],
[
3
,
480
,
112
,
True
,
'hard_swish'
,
1
],
[
3
,
672
,
112
,
True
,
'hard_swish'
,
1
],
# The number of channels in the last 4 stages is reduced by a
# factor of 2 compared to the standard implementation.
[
5
,
336
,
80
,
True
,
'hard_swish'
,
2
],
[
5
,
480
,
80
,
True
,
'hard_swish'
,
1
],
[
5
,
480
,
80
,
True
,
'hard_swish'
,
1
],
]
self
.
cls_ch_squeeze
=
480
self
.
cls_ch_expand
=
1280
self
.
lr_interval
=
3
elif
model_name
==
"small"
:
self
.
cfg
=
[
# k, exp, c, se, nl, s,
[
3
,
16
,
16
,
True
,
'relu'
,
2
],
[
3
,
72
,
24
,
False
,
'relu'
,
2
],
[
3
,
88
,
24
,
False
,
'relu'
,
1
],
[
5
,
96
,
40
,
True
,
'hard_swish'
,
2
],
[
5
,
240
,
40
,
True
,
'hard_swish'
,
1
],
[
5
,
240
,
40
,
True
,
'hard_swish'
,
1
],
[
5
,
120
,
48
,
True
,
'hard_swish'
,
1
],
[
5
,
144
,
48
,
True
,
'hard_swish'
,
1
],
# The number of channels in the last 4 stages is reduced by a
# factor of 2 compared to the standard implementation.
[
5
,
144
,
48
,
True
,
'hard_swish'
,
2
],
[
5
,
288
,
48
,
True
,
'hard_swish'
,
1
],
[
5
,
288
,
48
,
True
,
'hard_swish'
,
1
],
]
self
.
cls_ch_squeeze
=
288
self
.
cls_ch_expand
=
1280
self
.
lr_interval
=
2
else
:
raise
NotImplementedError
(
"mode[{}_model] is not implemented!"
.
format
(
model_name
))
self
.
modify_bottle_params
(
output_stride
)
def
modify_bottle_params
(
self
,
output_stride
=
None
):
if
output_stride
is
not
None
and
output_stride
%
2
!=
0
:
raise
Exception
(
"output stride must to be even number"
)
if
output_stride
is
None
:
return
else
:
stride
=
2
for
i
,
_cfg
in
enumerate
(
self
.
cfg
):
stride
=
stride
*
_cfg
[
-
1
]
if
stride
>
output_stride
:
s
=
1
self
.
cfg
[
i
][
-
1
]
=
s
def
net
(
self
,
input
,
class_dim
=
1000
,
end_points
=
None
,
decode_points
=
None
):
scale
=
self
.
scale
inplanes
=
self
.
inplanes
cfg
=
self
.
cfg
cls_ch_squeeze
=
self
.
cls_ch_squeeze
cls_ch_expand
=
self
.
cls_ch_expand
# conv1
conv
=
self
.
conv_bn_layer
(
input
,
filter_size
=
3
,
num_filters
=
self
.
make_divisible
(
inplanes
*
scale
),
stride
=
2
,
padding
=
1
,
num_groups
=
1
,
if_act
=
True
,
act
=
'hard_swish'
,
name
=
'conv1'
)
i
=
0
inplanes
=
self
.
make_divisible
(
inplanes
*
scale
)
for
layer_cfg
in
cfg
:
conv
=
self
.
residual_unit
(
input
=
conv
,
num_in_filter
=
inplanes
,
num_mid_filter
=
self
.
make_divisible
(
scale
*
layer_cfg
[
1
]),
num_out_filter
=
self
.
make_divisible
(
scale
*
layer_cfg
[
2
]),
act
=
layer_cfg
[
4
],
stride
=
layer_cfg
[
5
],
filter_size
=
layer_cfg
[
0
],
use_se
=
layer_cfg
[
3
],
name
=
'conv'
+
str
(
i
+
2
))
inplanes
=
self
.
make_divisible
(
scale
*
layer_cfg
[
2
])
i
+=
1
self
.
curr_stage
=
i
conv
=
self
.
conv_bn_layer
(
input
=
conv
,
filter_size
=
1
,
num_filters
=
self
.
make_divisible
(
scale
*
cls_ch_squeeze
),
stride
=
1
,
padding
=
0
,
num_groups
=
1
,
if_act
=
True
,
act
=
'hard_swish'
,
name
=
'conv_last'
)
return
conv
,
self
.
decode_point
conv
=
fluid
.
layers
.
pool2d
(
input
=
conv
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
conv
=
fluid
.
layers
.
conv2d
(
input
=
conv
,
num_filters
=
cls_ch_expand
,
filter_size
=
1
,
stride
=
1
,
padding
=
0
,
act
=
None
,
param_attr
=
ParamAttr
(
name
=
'last_1x1_conv_weights'
),
bias_attr
=
False
)
conv
=
fluid
.
layers
.
hard_swish
(
conv
)
drop
=
fluid
.
layers
.
dropout
(
x
=
conv
,
dropout_prob
=
0.2
)
out
=
fluid
.
layers
.
fc
(
input
=
drop
,
size
=
class_dim
,
param_attr
=
ParamAttr
(
name
=
'fc_weights'
),
bias_attr
=
ParamAttr
(
name
=
'fc_offset'
))
return
out
def
conv_bn_layer
(
self
,
input
,
filter_size
,
num_filters
,
stride
,
padding
,
num_groups
=
1
,
if_act
=
True
,
act
=
None
,
name
=
None
,
use_cudnn
=
True
,
res_last_bn_init
=
False
):
lr_idx
=
self
.
curr_stage
//
self
.
lr_interval
lr_idx
=
min
(
lr_idx
,
len
(
self
.
lr_mult_list
)
-
1
)
lr_mult
=
self
.
lr_mult_list
[
lr_idx
]
conv
=
fluid
.
layers
.
conv2d
(
input
=
input
,
num_filters
=
num_filters
,
filter_size
=
filter_size
,
stride
=
stride
,
padding
=
padding
,
groups
=
num_groups
,
act
=
None
,
use_cudnn
=
use_cudnn
,
param_attr
=
ParamAttr
(
name
=
name
+
'_weights'
,
learning_rate
=
lr_mult
),
bias_attr
=
False
)
bn_name
=
name
+
'_bn'
bn
=
fluid
.
layers
.
batch_norm
(
input
=
conv
,
param_attr
=
ParamAttr
(
name
=
bn_name
+
"_scale"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
bias_attr
=
ParamAttr
(
name
=
bn_name
+
"_offset"
,
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
)),
moving_mean_name
=
bn_name
+
'_mean'
,
moving_variance_name
=
bn_name
+
'_variance'
)
if
if_act
:
if
act
==
'relu'
:
bn
=
fluid
.
layers
.
relu
(
bn
)
elif
act
==
'hard_swish'
:
bn
=
fluid
.
layers
.
hard_swish
(
bn
)
return
bn
def
make_divisible
(
self
,
v
,
divisor
=
8
,
min_value
=
None
):
if
min_value
is
None
:
min_value
=
divisor
new_v
=
max
(
min_value
,
int
(
v
+
divisor
/
2
)
//
divisor
*
divisor
)
if
new_v
<
0.9
*
v
:
new_v
+=
divisor
return
new_v
def
se_block
(
self
,
input
,
num_out_filter
,
ratio
=
4
,
name
=
None
):
lr_idx
=
self
.
curr_stage
//
self
.
lr_interval
lr_idx
=
min
(
lr_idx
,
len
(
self
.
lr_mult_list
)
-
1
)
lr_mult
=
self
.
lr_mult_list
[
lr_idx
]
num_mid_filter
=
num_out_filter
//
ratio
pool
=
fluid
.
layers
.
pool2d
(
input
=
input
,
pool_type
=
'avg'
,
global_pooling
=
True
,
use_cudnn
=
False
)
conv1
=
fluid
.
layers
.
conv2d
(
input
=
pool
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
act
=
'relu'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_1_weights'
,
learning_rate
=
lr_mult
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_1_offset'
,
learning_rate
=
lr_mult
))
conv2
=
fluid
.
layers
.
conv2d
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
act
=
'hard_sigmoid'
,
param_attr
=
ParamAttr
(
name
=
name
+
'_2_weights'
,
learning_rate
=
lr_mult
),
bias_attr
=
ParamAttr
(
name
=
name
+
'_2_offset'
,
learning_rate
=
lr_mult
))
scale
=
fluid
.
layers
.
elementwise_mul
(
x
=
input
,
y
=
conv2
,
axis
=
0
)
return
scale
def
residual_unit
(
self
,
input
,
num_in_filter
,
num_mid_filter
,
num_out_filter
,
stride
,
filter_size
,
act
=
None
,
use_se
=
False
,
name
=
None
):
conv0
=
self
.
conv_bn_layer
(
input
=
input
,
filter_size
=
1
,
num_filters
=
num_mid_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
True
,
act
=
act
,
name
=
name
+
'_expand'
)
conv1
=
self
.
conv_bn_layer
(
input
=
conv0
,
filter_size
=
filter_size
,
num_filters
=
num_mid_filter
,
stride
=
stride
,
padding
=
int
((
filter_size
-
1
)
//
2
),
if_act
=
True
,
act
=
act
,
num_groups
=
num_mid_filter
,
use_cudnn
=
False
,
name
=
name
+
'_depthwise'
)
if
self
.
curr_stage
==
5
:
self
.
decode_point
=
conv1
if
use_se
:
conv1
=
self
.
se_block
(
input
=
conv1
,
num_out_filter
=
num_mid_filter
,
name
=
name
+
'_se'
)
conv2
=
self
.
conv_bn_layer
(
input
=
conv1
,
filter_size
=
1
,
num_filters
=
num_out_filter
,
stride
=
1
,
padding
=
0
,
if_act
=
False
,
name
=
name
+
'_linear'
,
res_last_bn_init
=
True
)
if
num_in_filter
!=
num_out_filter
or
stride
!=
1
:
return
conv2
else
:
return
fluid
.
layers
.
elementwise_add
(
x
=
input
,
y
=
conv2
,
act
=
None
)
def
MobileNetV3_small_x0_35
():
model
=
MobileNetV3
(
model_name
=
'small'
,
scale
=
0.35
)
return
model
def
MobileNetV3_small_x0_5
():
model
=
MobileNetV3
(
model_name
=
'small'
,
scale
=
0.5
)
return
model
def
MobileNetV3_small_x0_75
():
model
=
MobileNetV3
(
model_name
=
'small'
,
scale
=
0.75
)
return
model
def
MobileNetV3_small_x1_0
(
**
args
):
model
=
MobileNetV3
(
model_name
=
'small'
,
scale
=
1.0
,
**
args
)
return
model
def
MobileNetV3_small_x1_25
():
model
=
MobileNetV3
(
model_name
=
'small'
,
scale
=
1.25
)
return
model
def
MobileNetV3_large_x0_35
():
model
=
MobileNetV3
(
model_name
=
'large'
,
scale
=
0.35
)
return
model
def
MobileNetV3_large_x0_5
():
model
=
MobileNetV3
(
model_name
=
'large'
,
scale
=
0.5
)
return
model
def
MobileNetV3_large_x0_75
():
model
=
MobileNetV3
(
model_name
=
'large'
,
scale
=
0.75
)
return
model
def
MobileNetV3_large_x1_0
(
**
args
):
model
=
MobileNetV3
(
model_name
=
'large'
,
scale
=
1.0
,
**
args
)
return
model
def
MobileNetV3_large_x1_25
():
model
=
MobileNetV3
(
model_name
=
'large'
,
scale
=
1.25
)
return
model
pdseg/models/libs/model_libs.py
浏览文件 @
1e810160
...
...
@@ -109,6 +109,10 @@ def bn_relu(data):
return
fluid
.
layers
.
relu
(
bn
(
data
))
def
qsigmoid
(
data
):
return
fluid
.
layers
.
relu6
(
data
+
3
)
*
0.16667
def
relu
(
data
):
return
fluid
.
layers
.
relu
(
data
)
...
...
pdseg/models/modeling/deeplab.py
浏览文件 @
1e810160
...
...
@@ -21,10 +21,11 @@ import paddle
import
paddle.fluid
as
fluid
from
utils.config
import
cfg
from
models.libs.model_libs
import
scope
,
name_scope
from
models.libs.model_libs
import
bn
,
bn_relu
,
relu
from
models.libs.model_libs
import
bn
,
bn_relu
,
relu
,
qsigmoid
from
models.libs.model_libs
import
conv
from
models.libs.model_libs
import
separate_conv
from
models.backbone.mobilenet_v2
import
MobileNetV2
as
mobilenet_backbone
from
models.backbone.mobilenet_v2
import
MobileNetV2
as
mobilenet_v2_backbone
from
models.backbone.mobilenet_v3
import
MobileNetV3
as
mobilenet_v3_backbone
from
models.backbone.xception
import
Xception
as
xception_backbone
from
models.backbone.resnet_vd
import
ResNet
as
resnet_vd_backbone
...
...
@@ -35,22 +36,42 @@ def encoder(input):
# OUTPUT_STRIDE: 下采样倍数,8或16,决定aspp_ratios大小
# aspp_ratios:ASPP模块空洞卷积的采样率
if
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
==
16
:
aspp_ratios
=
[
6
,
12
,
18
]
elif
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
==
8
:
aspp_ratios
=
[
12
,
24
,
36
]
if
not
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_RATIOS
:
if
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
==
16
:
aspp_ratios
=
[
6
,
12
,
18
]
elif
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
==
8
:
aspp_ratios
=
[
12
,
24
,
36
]
else
:
aspp_ratios
=
[]
else
:
raise
Exception
(
"deeplab only support stride 8 or 16"
)
aspp_ratios
=
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_RATIOS
param_attr
=
fluid
.
ParamAttr
(
name
=
name_scope
+
'weights'
,
regularizer
=
None
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.06
))
concat_logits
=
[]
with
scope
(
'encoder'
):
channel
=
256
channel
=
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_CONVS_FILTERS
with
scope
(
"image_pool"
):
image_avg
=
fluid
.
layers
.
reduce_mean
(
input
,
[
2
,
3
],
keep_dim
=
True
)
image_avg
=
bn_relu
(
if
not
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
POOLING_CROP_SIZE
:
image_avg
=
fluid
.
layers
.
reduce_mean
(
input
,
[
2
,
3
],
keep_dim
=
True
)
else
:
pool_w
=
int
((
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
POOLING_CROP_SIZE
[
0
]
-
1.0
)
/
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
+
1.0
)
pool_h
=
int
((
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
POOLING_CROP_SIZE
[
1
]
-
1.0
)
/
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
+
1.0
)
image_avg
=
fluid
.
layers
.
pool2d
(
input
,
pool_size
=
(
pool_h
,
pool_w
),
pool_stride
=
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
POOLING_STRIDE
,
pool_type
=
'avg'
,
pool_padding
=
'VALID'
)
act
=
qsigmoid
if
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
SE_USE_QSIGMOID
else
bn_relu
image_avg
=
act
(
conv
(
image_avg
,
channel
,
...
...
@@ -60,6 +81,8 @@ def encoder(input):
padding
=
0
,
param_attr
=
param_attr
))
image_avg
=
fluid
.
layers
.
resize_bilinear
(
image_avg
,
input
.
shape
[
2
:])
if
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ADD_IMAGE_LEVEL_FEATURE
:
concat_logits
.
append
(
image_avg
)
with
scope
(
"aspp0"
):
aspp0
=
bn_relu
(
...
...
@@ -71,62 +94,154 @@ def encoder(input):
groups
=
1
,
padding
=
0
,
param_attr
=
param_attr
))
with
scope
(
"aspp1"
):
if
cfg
.
MODEL
.
DEEPLAB
.
ASPP_WITH_SEP_CONV
:
aspp1
=
separate_conv
(
input
,
channel
,
1
,
3
,
dilation
=
aspp_ratios
[
0
],
act
=
relu
)
else
:
aspp1
=
bn_relu
(
conv
(
input
,
channel
,
stride
=
1
,
filter_size
=
3
,
dilation
=
aspp_ratios
[
0
],
padding
=
aspp_ratios
[
0
],
param_attr
=
param_attr
))
with
scope
(
"aspp2"
):
if
cfg
.
MODEL
.
DEEPLAB
.
ASPP_WITH_SEP_CONV
:
aspp2
=
separate_conv
(
input
,
channel
,
1
,
3
,
dilation
=
aspp_ratios
[
1
],
act
=
relu
)
else
:
aspp2
=
bn_relu
(
conv
(
input
,
channel
,
stride
=
1
,
filter_size
=
3
,
dilation
=
aspp_ratios
[
1
],
padding
=
aspp_ratios
[
1
],
param_attr
=
param_attr
))
with
scope
(
"aspp3"
):
if
cfg
.
MODEL
.
DEEPLAB
.
ASPP_WITH_SEP_CONV
:
aspp3
=
separate_conv
(
input
,
channel
,
1
,
3
,
dilation
=
aspp_ratios
[
2
],
act
=
relu
)
else
:
aspp3
=
bn_relu
(
concat_logits
.
append
(
aspp0
)
if
aspp_ratios
:
with
scope
(
"aspp1"
):
if
cfg
.
MODEL
.
DEEPLAB
.
ASPP_WITH_SEP_CONV
:
aspp1
=
separate_conv
(
input
,
channel
,
1
,
3
,
dilation
=
aspp_ratios
[
0
],
act
=
relu
)
else
:
aspp1
=
bn_relu
(
conv
(
input
,
channel
,
stride
=
1
,
filter_size
=
3
,
dilation
=
aspp_ratios
[
0
],
padding
=
aspp_ratios
[
0
],
param_attr
=
param_attr
))
concat_logits
.
append
(
aspp1
)
with
scope
(
"aspp2"
):
if
cfg
.
MODEL
.
DEEPLAB
.
ASPP_WITH_SEP_CONV
:
aspp2
=
separate_conv
(
input
,
channel
,
1
,
3
,
dilation
=
aspp_ratios
[
1
],
act
=
relu
)
else
:
aspp2
=
bn_relu
(
conv
(
input
,
channel
,
stride
=
1
,
filter_size
=
3
,
dilation
=
aspp_ratios
[
1
],
padding
=
aspp_ratios
[
1
],
param_attr
=
param_attr
))
concat_logits
.
append
(
aspp2
)
with
scope
(
"aspp3"
):
if
cfg
.
MODEL
.
DEEPLAB
.
ASPP_WITH_SEP_CONV
:
aspp3
=
separate_conv
(
input
,
channel
,
1
,
3
,
dilation
=
aspp_ratios
[
2
],
act
=
relu
)
else
:
aspp3
=
bn_relu
(
conv
(
input
,
channel
,
stride
=
1
,
filter_size
=
3
,
dilation
=
aspp_ratios
[
2
],
padding
=
aspp_ratios
[
2
],
param_attr
=
param_attr
))
concat_logits
.
append
(
aspp3
)
with
scope
(
"concat"
):
data
=
fluid
.
layers
.
concat
(
concat_logits
,
axis
=
1
)
if
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_WITH_CONCAT_PROJECTION
:
data
=
bn_relu
(
conv
(
input
,
data
,
channel
,
stride
=
1
,
filter_size
=
3
,
dilation
=
aspp_ratios
[
2
]
,
padding
=
aspp_ratios
[
2
]
,
1
,
1
,
groups
=
1
,
padding
=
0
,
param_attr
=
param_attr
))
with
scope
(
"concat"
):
data
=
fluid
.
layers
.
concat
([
image_avg
,
aspp0
,
aspp1
,
aspp2
,
aspp3
],
axis
=
1
)
data
=
bn_relu
(
data
=
fluid
.
layers
.
dropout
(
data
,
0.9
)
if
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_WITH_SE
:
data
=
data
*
image_avg
return
data
def
_decoder_with_sum_merge
(
encode_data
,
decode_shortcut
,
param_attr
):
encode_data
=
fluid
.
layers
.
resize_bilinear
(
encode_data
,
decode_shortcut
.
shape
[
2
:])
encode_data
=
conv
(
encode_data
,
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
CONV_FILTERS
,
1
,
1
,
groups
=
1
,
padding
=
0
,
param_attr
=
param_attr
)
with
scope
(
'merge'
):
decode_shortcut
=
conv
(
decode_shortcut
,
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
CONV_FILTERS
,
1
,
1
,
groups
=
1
,
padding
=
0
,
param_attr
=
param_attr
)
return
encode_data
+
decode_shortcut
def
_decoder_with_concat
(
encode_data
,
decode_shortcut
,
param_attr
):
with
scope
(
'concat'
):
decode_shortcut
=
bn_relu
(
conv
(
decode_shortcut
,
48
,
1
,
1
,
groups
=
1
,
padding
=
0
,
param_attr
=
param_attr
))
encode_data
=
fluid
.
layers
.
resize_bilinear
(
encode_data
,
decode_shortcut
.
shape
[
2
:])
encode_data
=
fluid
.
layers
.
concat
([
encode_data
,
decode_shortcut
],
axis
=
1
)
if
cfg
.
MODEL
.
DEEPLAB
.
DECODER_USE_SEP_CONV
:
with
scope
(
"separable_conv1"
):
encode_data
=
separate_conv
(
encode_data
,
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
CONV_FILTERS
,
1
,
3
,
dilation
=
1
,
act
=
relu
)
with
scope
(
"separable_conv2"
):
encode_data
=
separate_conv
(
encode_data
,
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
CONV_FILTERS
,
1
,
3
,
dilation
=
1
,
act
=
relu
)
else
:
with
scope
(
"decoder_conv1"
):
encode_data
=
bn_relu
(
conv
(
data
,
c
hannel
,
1
,
1
,
groups
=
1
,
padding
=
0
,
encode_
data
,
c
fg
.
MODEL
.
DEEPLAB
.
DECODER
.
CONV_FILTERS
,
stride
=
1
,
filter_size
=
3
,
dilation
=
1
,
padding
=
1
,
param_attr
=
param_attr
))
data
=
fluid
.
layers
.
dropout
(
data
,
0.9
)
return
data
with
scope
(
"decoder_conv2"
):
encode_data
=
bn_relu
(
conv
(
encode_data
,
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
CONV_FILTERS
,
stride
=
1
,
filter_size
=
3
,
dilation
=
1
,
padding
=
1
,
param_attr
=
param_attr
))
return
encode_data
def
decoder
(
encode_data
,
decode_shortcut
):
...
...
@@ -139,61 +254,49 @@ def decoder(encode_data, decode_shortcut):
regularizer
=
None
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.06
))
with
scope
(
'decoder'
):
with
scope
(
'concat'
):
decode_shortcut
=
bn_relu
(
conv
(
decode_shortcut
,
48
,
1
,
1
,
groups
=
1
,
padding
=
0
,
param_attr
=
param_attr
))
if
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
USE_SUM_MERGE
:
return
_decoder_with_sum_merge
(
encode_data
,
decode_shortcut
,
param_attr
)
encode_data
=
fluid
.
layers
.
resize_bilinear
(
encode_data
,
decode_shortcut
.
shape
[
2
:])
encode_data
=
fluid
.
layers
.
concat
([
encode_data
,
decode_shortcut
],
axis
=
1
)
if
cfg
.
MODEL
.
DEEPLAB
.
DECODER_USE_SEP_CONV
:
with
scope
(
"separable_conv1"
):
encode_data
=
separate_conv
(
encode_data
,
256
,
1
,
3
,
dilation
=
1
,
act
=
relu
)
with
scope
(
"separable_conv2"
):
encode_data
=
separate_conv
(
encode_data
,
256
,
1
,
3
,
dilation
=
1
,
act
=
relu
)
else
:
with
scope
(
"decoder_conv1"
):
encode_data
=
bn_relu
(
conv
(
encode_data
,
256
,
stride
=
1
,
filter_size
=
3
,
dilation
=
1
,
padding
=
1
,
param_attr
=
param_attr
))
with
scope
(
"decoder_conv2"
):
encode_data
=
bn_relu
(
conv
(
encode_data
,
256
,
stride
=
1
,
filter_size
=
3
,
dilation
=
1
,
padding
=
1
,
param_attr
=
param_attr
))
return
encode_data
return
_decoder_with_concat
(
encode_data
,
decode_shortcut
,
param_attr
)
def
mobilenet
(
input
):
if
'v3'
in
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE
:
model_name
=
'large'
if
'large'
in
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE
else
'small'
return
_mobilenetv3
(
input
,
model_name
)
return
_mobilenetv2
(
input
)
def
mobilenetv2
(
input
):
def
_mobilenetv3
(
input
,
model_name
=
'large'
):
# Backbone: mobilenetv3结构配置
# DEPTH_MULTIPLIER: mobilenetv3的scale设置,默认1.0
# OUTPUT_STRIDE:下采样倍数
scale
=
cfg
.
MODEL
.
DEEPLAB
.
DEPTH_MULTIPLIER
output_stride
=
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
lr_mult_shortcut
=
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE_LR_MULT_LIST
model
=
mobilenet_v3_backbone
(
scale
=
scale
,
output_stride
=
output_stride
,
model_name
=
model_name
,
lr_mult_list
=
lr_mult_shortcut
)
data
,
decode_shortcut
=
model
.
net
(
input
)
return
data
,
decode_shortcut
def
_mobilenetv2
(
input
):
# Backbone: mobilenetv2结构配置
# DEPTH_MULTIPLIER: mobilenetv2的scale设置,默认1.0
# OUTPUT_STRIDE:下采样倍数
# end_points: mobilenetv2的block数
# decode_point: 从mobilenetv2中引出分支所在block数, 作为decoder输入
if
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE_LR_MULT_LIST
is
not
None
:
print
(
'mobilenetv2 backbone do not support BACKBONE_LR_MULT_LIST setting'
)
scale
=
cfg
.
MODEL
.
DEEPLAB
.
DEPTH_MULTIPLIER
output_stride
=
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
model
=
mobilenet_backbone
(
scale
=
scale
,
output_stride
=
output_stride
)
model
=
mobilenet_
v2_
backbone
(
scale
=
scale
,
output_stride
=
output_stride
)
end_points
=
18
decode_point
=
4
data
,
decode_shortcuts
=
model
.
net
(
...
...
@@ -272,11 +375,7 @@ def deeplabv3p(img, num_classes):
'xception backbone do not support BACKBONE_LR_MULT_LIST setting'
)
elif
'mobilenet'
in
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE
:
data
,
decode_shortcut
=
mobilenetv2
(
img
)
if
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE_LR_MULT_LIST
is
not
None
:
print
(
'mobilenetv2 backbone do not support BACKBONE_LR_MULT_LIST setting'
)
data
,
decode_shortcut
=
mobilenet
(
img
)
elif
'resnet'
in
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE
:
data
,
decode_shortcut
=
resnet_vd
(
img
)
else
:
...
...
@@ -296,16 +395,20 @@ def deeplabv3p(img, num_classes):
regularizer
=
fluid
.
regularizer
.
L2DecayRegularizer
(
regularization_coeff
=
0.0
),
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
0.01
))
with
scope
(
'logit'
):
with
fluid
.
name_scope
(
'last_conv'
):
logit
=
conv
(
data
,
num_classes
,
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
True
,
param_attr
=
param_attr
)
logit
=
fluid
.
layers
.
resize_bilinear
(
logit
,
img
.
shape
[
2
:])
if
not
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
OUTPUT_IS_LOGITS
:
with
scope
(
'logit'
):
with
fluid
.
name_scope
(
'last_conv'
):
logit
=
conv
(
data
,
num_classes
,
1
,
stride
=
1
,
padding
=
0
,
bias_attr
=
True
,
param_attr
=
param_attr
)
else
:
logit
=
data
logit
=
fluid
.
layers
.
resize_bilinear
(
logit
,
img
.
shape
[
2
:])
return
logit
pdseg/utils/config.py
浏览文件 @
1e810160
...
...
@@ -118,7 +118,7 @@ cfg.AUG.RICH_CROP.BLUR = False
# 图像启动模糊百分比,0-1
cfg
.
AUG
.
RICH_CROP
.
BLUR_RATIO
=
0.1
# 图像是否切换到rgb模式
cfg
.
AUG
.
TO_RGB
=
Tru
e
cfg
.
AUG
.
TO_RGB
=
Fals
e
########################### 训练配置 ##########################################
# 模型保存路径
...
...
@@ -198,17 +198,28 @@ cfg.MODEL.SCALE_LOSS = "DYNAMIC"
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE
=
"xception_65"
# DeepLab output stride
cfg
.
MODEL
.
DEEPLAB
.
OUTPUT_STRIDE
=
16
# MobileNet v2 backbone scale 设置
# MobileNet v2
/v3
backbone scale 设置
cfg
.
MODEL
.
DEEPLAB
.
DEPTH_MULTIPLIER
=
1.0
#
MobileNet v2 backbone scale
设置
#
DeepLab Encoder
设置
cfg
.
MODEL
.
DEEPLAB
.
ENCODER_WITH_ASPP
=
True
# MobileNet v2 backbone scale 设置
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
POOLING_STRIDE
=
[
1
,
1
]
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
POOLING_CROP_SIZE
=
None
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_WITH_SE
=
False
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
SE_USE_QSIGMOID
=
False
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_CONVS_FILTERS
=
256
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_WITH_CONCAT_PROJECTION
=
True
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ADD_IMAGE_LEVEL_FEATURE
=
True
cfg
.
MODEL
.
DEEPLAB
.
ENCODER
.
ASPP_RATIOS
=
None
# DeepLab Decoder 设置
cfg
.
MODEL
.
DEEPLAB
.
ENABLE_DECODER
=
True
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
USE_SUM_MERGE
=
False
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
CONV_FILTERS
=
256
cfg
.
MODEL
.
DEEPLAB
.
DECODER
.
OUTPUT_IS_LOGITS
=
False
# ASPP是否使用可分离卷积
cfg
.
MODEL
.
DEEPLAB
.
ASPP_WITH_SEP_CONV
=
True
# 解码器是否使用可分离卷积
cfg
.
MODEL
.
DEEPLAB
.
DECODER_USE_SEP_CONV
=
True
#
resnet_vd
分阶段学习率
#
Backbone
分阶段学习率
cfg
.
MODEL
.
DEEPLAB
.
BACKBONE_LR_MULT_LIST
=
None
########################## UNET模型配置 #######################################
...
...
pretrained_model/download_model.py
浏览文件 @
1e810160
...
...
@@ -34,6 +34,10 @@ model_urls = {
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_5_pretrained.tar"
,
"mobilenetv2-0-25_bn_imagenet"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV2_x0_25_pretrained.tar"
,
"mobilenetv3-1-0_large_bn_imagenet"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar"
,
"mobilenetv3-1-0_small_bn_imagenet"
:
"https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar"
,
"xception41_imagenet"
:
"https://paddleseg.bj.bcebos.com/models/Xception41_pretrained.tgz"
,
"xception65_imagenet"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录