未验证 提交 140025b7 编写于 作者: W wuyefeilin 提交者: GitHub

add yaml of benchmark and hrnet_w18_cityscape (#416)

* update hrnet yaml

* add benchmark yaml

* update deeplabv3p.yml
上级 4fe76446
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle.fluid as fluid
from paddle.fluid.dygraph.parallel import ParallelEnv
from dygraph.datasets import DATASETS
import dygraph.transforms as T
#from dygraph.models import MODELS
from dygraph.cvlibs import manager
from dygraph.utils import get_environ_info
from dygraph.utils import logger
from dygraph.core import train
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
# params of model
parser.add_argument(
'--model_name',
dest='model_name',
help='Model type for training, which is one of {}'.format(
str(list(manager.MODELS.components_dict.keys()))),
type=str,
default='UNet')
# params of dataset
parser.add_argument(
'--dataset',
dest='dataset',
help="The dataset you want to train, which is one of {}".format(
str(list(DATASETS.keys()))),
type=str,
default='OpticDiscSeg')
parser.add_argument(
'--dataset_root',
dest='dataset_root',
help="dataset root directory",
type=str,
default=None)
# params of training
parser.add_argument(
"--input_size",
dest="input_size",
help="The image size for net inputs.",
nargs=2,
default=[512, 512],
type=int)
parser.add_argument(
'--iters',
dest='iters',
help='iters for training',
type=int,
default=10000)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu',
type=int,
default=2)
parser.add_argument(
'--learning_rate',
dest='learning_rate',
help='Learning rate',
type=float,
default=0.01)
parser.add_argument(
'--pretrained_model',
dest='pretrained_model',
help='The path of pretrained model',
type=str,
default=None)
parser.add_argument(
'--resume_model',
dest='resume_model',
help='The path of resume model',
type=str,
default=None)
parser.add_argument(
'--save_interval_iters',
dest='save_interval_iters',
help='The interval iters for save a model snapshot',
type=int,
default=1000)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the model snapshot',
type=str,
default='./output')
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=0)
parser.add_argument(
'--do_eval',
dest='do_eval',
help='Eval while training',
action='store_true')
parser.add_argument(
'--log_iters',
dest='log_iters',
help='Display logging information at every log_iters',
default=10,
type=int)
parser.add_argument(
'--use_vdl',
dest='use_vdl',
help='Whether to record the data to VisualDL during training',
action='store_true')
return parser.parse_args()
def main(args):
env_info = get_environ_info()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['\n', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
places = fluid.CUDAPlace(ParallelEnv().dev_id) \
if env_info['Paddle compiled with cuda'] and env_info['GPUs used'] \
else fluid.CPUPlace()
if args.dataset not in DATASETS:
raise Exception('`--dataset` is invalid. it should be one of {}'.format(
str(list(DATASETS.keys()))))
dataset = DATASETS[args.dataset]
with fluid.dygraph.guard(places):
# Creat dataset reader
train_transforms = T.Compose([
T.RandomHorizontalFlip(0.5),
T.ResizeStepScaling(0.5, 2.0, 0.25),
T.RandomPaddingCrop(args.input_size),
T.RandomDistort(),
T.Normalize(),
])
train_dataset = dataset(
dataset_root=args.dataset_root,
transforms=train_transforms,
mode='train')
eval_dataset = None
if args.do_eval:
eval_transforms = T.Compose(
[T.Padding((2049, 1025)),
T.Normalize()])
eval_dataset = dataset(
dataset_root=args.dataset_root,
transforms=eval_transforms,
mode='val')
model = manager.MODELS[args.model_name](
num_classes=train_dataset.num_classes)
# Creat optimizer
# todo, may less one than len(loader)
num_iters_each_epoch = len(train_dataset) // (
args.batch_size * ParallelEnv().nranks)
lr_decay = fluid.layers.polynomial_decay(
args.learning_rate, args.iters, end_learning_rate=0, power=0.9)
optimizer = fluid.optimizer.Momentum(
lr_decay,
momentum=0.9,
parameter_list=model.parameters(),
regularization=fluid.regularizer.L2Decay(regularization_coeff=4e-5))
train(
model,
train_dataset,
places=places,
eval_dataset=eval_dataset,
optimizer=optimizer,
save_dir=args.save_dir,
iters=args.iters,
batch_size=args.batch_size,
resume_model=args.resume_model,
save_interval_iters=args.save_interval_iters,
log_iters=args.log_iters,
num_classes=train_dataset.num_classes,
num_workers=args.num_workers,
use_vdl=args.use_vdl)
if __name__ == '__main__':
args = parse_args()
main(args)
batch_size: 2
iters: 500
train_dataset:
type: Cityscapes
dataset_root: data/cityscapes
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1024, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
- type: Normalize
mode: train
val_dataset:
type: Cityscapes
dataset_root: data/cityscapes
transforms:
- type: Normalize
mode: val
model:
type: DeepLabV3P
backbone:
type: ResNet50_vd
output_stride: 8
num_classes: 19
backbone_indices: [0, 3]
aspp_ratios: [1, 12, 24, 36]
optimizer:
type: sgd
weight_decay: 0.00004
learning_rate:
value: 0.01
decay:
type: poly
power: 0.9
end_lr: 0.0
loss:
types:
- type: CrossEntropyLoss
ignore_index: 255
coef: [1]
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import paddle.fluid as fluid
from paddle.fluid.dygraph.parallel import ParallelEnv
from dygraph.datasets import DATASETS
import dygraph.transforms as T
#from dygraph.models import MODELS
from dygraph.cvlibs import manager
from dygraph.utils import get_environ_info
from dygraph.utils import logger
from dygraph.core import train
def parse_args():
parser = argparse.ArgumentParser(description='Model training')
# params of model
parser.add_argument(
'--model_name',
dest='model_name',
help='Model type for training, which is one of {}'.format(
str(list(manager.MODELS.components_dict.keys()))),
type=str,
default='UNet')
# params of dataset
parser.add_argument(
'--dataset',
dest='dataset',
help="The dataset you want to train, which is one of {}".format(
str(list(DATASETS.keys()))),
type=str,
default='OpticDiscSeg')
parser.add_argument(
'--dataset_root',
dest='dataset_root',
help="dataset root directory",
type=str,
default=None)
# params of training
parser.add_argument(
"--input_size",
dest="input_size",
help="The image size for net inputs.",
nargs=2,
default=[512, 512],
type=int)
parser.add_argument(
'--iters',
dest='iters',
help='iters for training',
type=int,
default=10000)
parser.add_argument(
'--batch_size',
dest='batch_size',
help='Mini batch size of one gpu or cpu',
type=int,
default=2)
parser.add_argument(
'--learning_rate',
dest='learning_rate',
help='Learning rate',
type=float,
default=0.01)
parser.add_argument(
'--pretrained_model',
dest='pretrained_model',
help='The path of pretrained model',
type=str,
default=None)
parser.add_argument(
'--resume_model',
dest='resume_model',
help='The path of resume model',
type=str,
default=None)
parser.add_argument(
'--save_interval_iters',
dest='save_interval_iters',
help='The interval iters for save a model snapshot',
type=int,
default=1000)
parser.add_argument(
'--save_dir',
dest='save_dir',
help='The directory for saving the model snapshot',
type=str,
default='./output')
parser.add_argument(
'--num_workers',
dest='num_workers',
help='Num workers for data loader',
type=int,
default=0)
parser.add_argument(
'--do_eval',
dest='do_eval',
help='Eval while training',
action='store_true')
parser.add_argument(
'--log_iters',
dest='log_iters',
help='Display logging information at every log_iters',
default=10,
type=int)
parser.add_argument(
'--use_vdl',
dest='use_vdl',
help='Whether to record the data to VisualDL during training',
action='store_true')
return parser.parse_args()
def main(args):
env_info = get_environ_info()
info = ['{}: {}'.format(k, v) for k, v in env_info.items()]
info = '\n'.join(['\n', format('Environment Information', '-^48s')] + info +
['-' * 48])
logger.info(info)
places = fluid.CUDAPlace(ParallelEnv().dev_id) \
if env_info['Paddle compiled with cuda'] and env_info['GPUs used'] \
else fluid.CPUPlace()
if args.dataset not in DATASETS:
raise Exception('`--dataset` is invalid. it should be one of {}'.format(
str(list(DATASETS.keys()))))
dataset = DATASETS[args.dataset]
with fluid.dygraph.guard(places):
# Creat dataset reader
train_transforms = T.Compose([
T.RandomHorizontalFlip(0.5),
T.ResizeStepScaling(0.5, 2.0, 0.25),
T.RandomPaddingCrop(args.input_size),
T.RandomDistort(),
T.Normalize(),
])
train_dataset = dataset(
dataset_root=args.dataset_root,
transforms=train_transforms,
mode='train')
eval_dataset = None
if args.do_eval:
eval_transforms = T.Compose([T.Normalize()])
eval_dataset = dataset(
dataset_root=args.dataset_root,
transforms=eval_transforms,
mode='val')
model = manager.MODELS[args.model_name](
num_classes=train_dataset.num_classes,
pretrained_model=args.pretrained_model)
# Creat optimizer
# todo, may less one than len(loader)
num_iters_each_epoch = len(train_dataset) // (
args.batch_size * ParallelEnv().nranks)
lr_decay = fluid.layers.polynomial_decay(
args.learning_rate, args.iters, end_learning_rate=0, power=0.9)
optimizer = fluid.optimizer.Momentum(
lr_decay,
momentum=0.9,
parameter_list=model.parameters(),
regularization=fluid.regularizer.L2Decay(regularization_coeff=4e-5))
train(
model,
train_dataset,
places=places,
eval_dataset=eval_dataset,
optimizer=optimizer,
save_dir=args.save_dir,
iters=args.iters,
batch_size=args.batch_size,
resume_model=args.resume_model,
save_interval_iters=args.save_interval_iters,
log_iters=args.log_iters,
num_classes=train_dataset.num_classes,
num_workers=args.num_workers,
use_vdl=args.use_vdl)
if __name__ == '__main__':
args = parse_args()
main(args)
batch_size: 2
iters: 500
train_dataset:
type: Cityscapes
dataset_root: data/cityscapes
transforms:
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1024, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
- type: Normalize
mode: train
val_dataset:
type: Cityscapes
dataset_root: data/cityscapes
transforms:
- type: Normalize
mode: val
model:
type: FCN
backbone:
type: HRNet_W18
num_classes: 19
backbone_indices: [-1]
optimizer:
type: sgd
weight_decay: 0.0005
learning_rate:
value: 0.01
decay:
type: poly
power: 0.9
end_lr: 0.0
loss:
types:
- type: CrossEntropyLoss
ignore_index: 255
coef: [1]
......@@ -4,10 +4,12 @@ model:
type: FCN
backbone:
type: HRNet_W18
pretrained: pretrained_model/hrnet_w18_imagenet
pretrained: pretrained_model/hrnet_w18_ssld
num_classes: 19
pretrained: Null
backbone_indices: [-1]
optimizer:
weight_decay: 0.0005
iters: 80000
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册