提交 09ff7e19 编写于 作者: B baiyfbupt

Fix the issue of slim quantization requiring too much GPU memory

上级 fa5b0a0e
......@@ -109,7 +109,7 @@ def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
test_prog, startup_prog, phase=ModelPhase.EVAL)
data_loader.set_sample_generator(
data_generator, drop_last=False, batch_size=cfg.BATCH_SIZE)
data_generator, drop_last=False, batch_size=1)
# Get device environment
places = fluid.cuda_places() if use_gpu else fluid.cpu_places()
......@@ -142,6 +142,7 @@ def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
fluid.io.load_persistables(exe, ckpt_dir, main_program=test_prog)
if kwargs['convert']:
test_prog = convert(test_prog, place, config)
compiled_test_prog = fluid.CompiledProgram(test_prog)
# Use streaming confusion matrix to calculate mean_iou
np.set_printoptions(
precision=4, suppress=True, linewidth=160, floatmode="fixed")
......@@ -157,7 +158,7 @@ def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, **kwargs):
try:
step += 1
loss, pred, grts, masks = exe.run(
test_prog, fetch_list=fetch_list, return_numpy=True)
compiled_test_prog, fetch_list=fetch_list, return_numpy=True)
loss = np.mean(np.array(loss))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册