未验证 提交 01190a0e 编写于 作者: W wuzewu 提交者: GitHub

Merge pull request #311 from wuyefeilin/develop

add resnet_vd
EVAL_CROP_SIZE: (2049, 1025) # (width, height), for unpadding rangescaling and stepscaling
TRAIN_CROP_SIZE: (769, 769) # (width, height), for unpadding rangescaling and stepscaling
AUG:
AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling
FIX_RESIZE_SIZE: (2048, 1024) # (width, height), for unpadding
INF_RESIZE_VALUE: 500 # for rangescaling
MAX_RESIZE_VALUE: 600 # for rangescaling
MIN_RESIZE_VALUE: 400 # for rangescaling
MAX_SCALE_FACTOR: 2.0 # for stepscaling
MIN_SCALE_FACTOR: 0.5 # for stepscaling
SCALE_STEP_SIZE: 0.25 # for stepscaling
MIRROR: True
TO_RGB: True
BATCH_SIZE: 16
DATASET:
DATA_DIR: "./dataset/cityscapes/"
IMAGE_TYPE: "rgb" # choice rgb or rgba
NUM_CLASSES: 19
TEST_FILE_LIST: "dataset/cityscapes/val.list"
TRAIN_FILE_LIST: "dataset/cityscapes/train.list"
VAL_FILE_LIST: "dataset/cityscapes/val.list"
IGNORE_INDEX: 255
SEPARATOR: " "
FREEZE:
MODEL_FILENAME: "model"
PARAMS_FILENAME: "params"
MODEL:
DEFAULT_NORM_TYPE: "bn"
MODEL_NAME: "deeplabv3p"
DEEPLAB:
ASPP_WITH_SEP_CONV: True
DECODER_USE_SEP_CONV: True
BACKBONE: "resnet_vd_50"
BACKBONE_LR_MULT_LIST: [0.1, 0.1, 0.2, 0.2, 1.0]
TRAIN:
PRETRAINED_MODEL_DIR: u"pretrained_model/resnet50_vd_imagenet"
MODEL_SAVE_DIR: "saved_model/deeplabv3p_resnet50_vd_bn_cityscapes"
SNAPSHOT_EPOCH: 10
SYNC_BATCH_NORM: True
TEST:
TEST_MODEL: "saved_model/deeplabv3p_resnet50_vd_bn_cityscapes/final"
SOLVER:
LR: 0.05
LR_POLICY: "poly"
OPTIMIZER: "sgd"
NUM_EPOCHS: 700
...@@ -37,6 +37,7 @@ PaddleSeg对所有内置的分割模型都提供了公开数据集下的预训 ...@@ -37,6 +37,7 @@ PaddleSeg对所有内置的分割模型都提供了公开数据集下的预训
|---|---|---|---| |---|---|---|---|
| ResNet50(适配PSPNet) | ImageNet | [resnet50_v2_pspnet](https://paddleseg.bj.bcebos.com/resnet50_v2_pspnet.tgz)| -- | | ResNet50(适配PSPNet) | ImageNet | [resnet50_v2_pspnet](https://paddleseg.bj.bcebos.com/resnet50_v2_pspnet.tgz)| -- |
| ResNet101(适配PSPNet) | ImageNet | [resnet101_v2_pspnet](https://paddleseg.bj.bcebos.com/resnet101_v2_pspnet.tgz)| -- | | ResNet101(适配PSPNet) | ImageNet | [resnet101_v2_pspnet](https://paddleseg.bj.bcebos.com/resnet101_v2_pspnet.tgz)| -- |
| ResNet50_vd | ImageNet | [ResNet50_vd_ssld_pretrained.tgz](https://paddleseg.bj.bcebos.com/models/ResNet50_vd_ssld_pretrained.tgz) | 83.0%/96.4% |
## COCO预训练模型 ## COCO预训练模型
...@@ -58,7 +59,8 @@ train数据集合为Cityscapes训练集合,测试为Cityscapes的验证集合 ...@@ -58,7 +59,8 @@ train数据集合为Cityscapes训练集合,测试为Cityscapes的验证集合
|---|---|---|---|---|---| |---|---|---|---|---|---|
| DeepLabv3+/MobileNetv2/bn | Cityscapes |[mobilenet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |16|false| 0.698| | DeepLabv3+/MobileNetv2/bn | Cityscapes |[mobilenet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/mobilenet_cityscapes.tgz) |16|false| 0.698|
| DeepLabv3+/Xception65/gn | Cityscapes |[deeplabv3p_xception65_gn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz) |16|false| 0.7824 | | DeepLabv3+/Xception65/gn | Cityscapes |[deeplabv3p_xception65_gn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz) |16|false| 0.7824 |
| DeepLabv3+/Xception65/bn | Cityscapes |[deeplabv3p_xception65_bn_cityscapes_.tgz](https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz) | 16 | false | 0.7930 | | DeepLabv3+/Xception65/bn | Cityscapes |[deeplabv3p_xception65_bn_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz) | 16 | false | 0.7930 |
| DeepLabv3+/ResNet50_vd/bn | Cityscapes |[deeplabv3p_resnet50_vd_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/deeplabv3p_resnet50_vd_cityscapes.tgz) | 16 | false | 0.8006 |
| ICNet/bn | Cityscapes |[icnet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/icnet_cityscapes.tar.gz) |16|false| 0.6831 | | ICNet/bn | Cityscapes |[icnet_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/icnet_cityscapes.tar.gz) |16|false| 0.6831 |
| PSPNet/bn | Cityscapes |[pspnet50_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet50_cityscapes.tgz) |16|false| 0.7013 | | PSPNet/bn | Cityscapes |[pspnet50_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet50_cityscapes.tgz) |16|false| 0.7013 |
| PSPNet/bn | Cityscapes |[pspnet101_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet101_cityscapes.tgz) |16|false| 0.7734 | | PSPNet/bn | Cityscapes |[pspnet101_cityscapes.tgz](https://paddleseg.bj.bcebos.com/models/pspnet101_cityscapes.tgz) |16|false| 0.7734 |
......
...@@ -352,6 +352,8 @@ def resnet_vd(input): ...@@ -352,6 +352,8 @@ def resnet_vd(input):
else: else:
raise Exception("deeplab only support stride 8 or 16") raise Exception("deeplab only support stride 8 or 16")
lr_mult_list = cfg.MODEL.DEEPLAB.BACKBONE_LR_MULT_LIST lr_mult_list = cfg.MODEL.DEEPLAB.BACKBONE_LR_MULT_LIST
if lr_mult_list is None:
lr_mult_list = [1.0, 1.0, 1.0, 1.0, 1.0]
model = resnet_vd_backbone( model = resnet_vd_backbone(
layers, stem='deeplab', lr_mult_list=lr_mult_list) layers, stem='deeplab', lr_mult_list=lr_mult_list)
data, decode_shortcuts = model.net( data, decode_shortcuts = model.net(
......
...@@ -42,6 +42,8 @@ model_urls = { ...@@ -42,6 +42,8 @@ model_urls = {
"https://paddleseg.bj.bcebos.com/models/Xception41_pretrained.tgz", "https://paddleseg.bj.bcebos.com/models/Xception41_pretrained.tgz",
"xception65_imagenet": "xception65_imagenet":
"https://paddleseg.bj.bcebos.com/models/Xception65_pretrained.tgz", "https://paddleseg.bj.bcebos.com/models/Xception65_pretrained.tgz",
"resnet50_vd_imagenet":
"https://paddleseg.bj.bcebos.com/models/ResNet50_vd_ssld_pretrained.tgz",
"hrnet_w18_bn_imagenet": "hrnet_w18_bn_imagenet":
"https://paddleseg.bj.bcebos.com/models/hrnet_w18_imagenet.tar", "https://paddleseg.bj.bcebos.com/models/hrnet_w18_imagenet.tar",
"hrnet_w30_bn_imagenet": "hrnet_w30_bn_imagenet":
...@@ -76,6 +78,8 @@ model_urls = { ...@@ -76,6 +78,8 @@ model_urls = {
"https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz", "https://paddleseg.bj.bcebos.com/models/deeplabv3p_xception65_cityscapes.tgz",
"deeplabv3p_xception65_bn_cityscapes": "deeplabv3p_xception65_bn_cityscapes":
"https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz", "https://paddleseg.bj.bcebos.com/models/xception65_bn_cityscapes.tgz",
"deeplabv3p_resnet50_vd_cityscapes":
"https://paddleseg.bj.bcebos.com/models/deeplabv3p_resnet50_vd_cityscapes.tgz",
"unet_bn_coco": "unet_bn_coco":
"https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz", "https://paddleseg.bj.bcebos.com/models/unet_coco_v3.tgz",
"icnet_bn_cityscapes": "icnet_bn_cityscapes":
......
...@@ -145,8 +145,10 @@ PaddleSeg在AI Studio平台上提供了在线体验的DeepLabv3+图像分割教 ...@@ -145,8 +145,10 @@ PaddleSeg在AI Studio平台上提供了在线体验的DeepLabv3+图像分割教
|mobilenetv2-0-25_bn_imagenet|MobileNetV2|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 0.25 <br> MODEL.DEFAULT_NORM_TYPE: bn| |mobilenetv2-0-25_bn_imagenet|MobileNetV2|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 0.25 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|xception41_imagenet|Xception41|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_41 <br> MODEL.DEFAULT_NORM_TYPE: bn| |xception41_imagenet|Xception41|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_41 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|xception65_imagenet|Xception65|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn| |xception65_imagenet|Xception65|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|resnet50_vd_imagenet|ResNet50_vd|bn|ImageNet|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: resnet50_vd <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_mobilenetv2-1-0_bn_coco|MobileNetV2|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn| |deeplabv3p_mobilenetv2-1-0_bn_coco|MobileNetV2|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn|
|**deeplabv3p_xception65_bn_coco**|Xception65|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn | |**deeplabv3p_xception65_bn_coco**|Xception65|bn|COCO|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn |
|deeplabv3p_mobilenetv2-1-0_bn_cityscapes|MobileNetV2|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn| |deeplabv3p_mobilenetv2-1-0_bn_cityscapes|MobileNetV2|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: mobilenetv2 <br> MODEL.DEEPLAB.DEPTH_MULTIPLIER: 1.0 <br> MODEL.DEEPLAB.ENCODER_WITH_ASPP: False <br> MODEL.DEEPLAB.ENABLE_DECODER: False <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_xception65_gn_cityscapes|Xception65|gn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: gn| |deeplabv3p_xception65_gn_cityscapes|Xception65|gn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: gn|
|deeplabv3p_xception65_bn_cityscapes|Xception65|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn| |deeplabv3p_xception65_bn_cityscapes|Xception65|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: xception_65 <br> MODEL.DEFAULT_NORM_TYPE: bn|
|deeplabv3p_resnet50_vd_cityscapes|resnet50_vd|bn|Cityscapes|MODEL.MODEL_NAME: deeplabv3p <br> MODEL.DEEPLAB.BACKBONE: resnet50_vd <br> MODEL.DEFAULT_NORM_TYPE: bn|
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册