model_builder.py 12.0 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import struct

import paddle.fluid as fluid
import numpy as np
from paddle.fluid.proto.framework_pb2 import VarType

import solver
from utils.config import cfg
from loss import multi_softmax_with_loss
from loss import multi_dice_loss
from loss import multi_bce_loss
from models.modeling import deeplab, unet, icnet, pspnet, hrnet, fast_scnn


class ModelPhase(object):
    """
    Standard name for model phase in PaddleSeg

    The following standard keys are defined:
    * `TRAIN`: training mode.
    * `EVAL`: testing/evaluation mode.
    * `PREDICT`: prediction/inference mode.
    * `VISUAL` : visualization mode
    """

    TRAIN = 'train'
    EVAL = 'eval'
    PREDICT = 'predict'
    VISUAL = 'visual'

    @staticmethod
    def is_train(phase):
        return phase == ModelPhase.TRAIN

    @staticmethod
    def is_predict(phase):
        return phase == ModelPhase.PREDICT

    @staticmethod
    def is_eval(phase):
        return phase == ModelPhase.EVAL

    @staticmethod
    def is_visual(phase):
        return phase == ModelPhase.VISUAL

    @staticmethod
    def is_valid_phase(phase):
        """ Check valid phase """
        if ModelPhase.is_train(phase) or ModelPhase.is_predict(phase) \
                or ModelPhase.is_eval(phase) or ModelPhase.is_visual(phase):
            return True

        return False


def seg_model(image, class_num):
    model_name = cfg.MODEL.MODEL_NAME
    if model_name == 'unet':
        logits = unet.unet(image, class_num)
    elif model_name == 'deeplabv3p':
        logits = deeplab.deeplabv3p(image, class_num)
    elif model_name == 'icnet':
        logits = icnet.icnet(image, class_num)
    elif model_name == 'pspnet':
        logits = pspnet.pspnet(image, class_num)
    elif model_name == 'hrnet':
        logits = hrnet.hrnet(image, class_num)
    elif model_name == 'fast_scnn':
        logits = fast_scnn.fast_scnn(image, class_num)
    else:
        raise Exception(
            "unknow model name, only support unet, deeplabv3p, icnet, pspnet, hrnet"
        )
    return logits


def softmax(logit):
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.softmax(logit)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit


def sigmoid_to_softmax(logit):
    """
    one channel to two channel
    """
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit_back = 1 - logit
    logit = fluid.layers.concat([logit_back, logit], axis=-1)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit


def export_preprocess(image):
    """导出模型的预处理流程"""

    image = fluid.layers.transpose(image, [0, 3, 1, 2])
    origin_shape = fluid.layers.shape(image)[-2:]

    # 不同AUG_METHOD方法的resize
    if cfg.AUG.AUG_METHOD == 'unpadding':
        h_fix = cfg.AUG.FIX_RESIZE_SIZE[1]
        w_fix = cfg.AUG.FIX_RESIZE_SIZE[0]
        image = fluid.layers.resize_bilinear(
            image, out_shape=[h_fix, w_fix], align_corners=False, align_mode=0)
    elif cfg.AUG.AUG_METHOD == 'rangescaling':
        size = cfg.AUG.INF_RESIZE_VALUE
        value = fluid.layers.reduce_max(origin_shape)
        scale = float(size) / value.astype('float32')
        image = fluid.layers.resize_bilinear(
            image, scale=scale, align_corners=False, align_mode=0)

    # 存储resize后图像shape
    valid_shape = fluid.layers.shape(image)[-2:]

    # padding到eval_crop_size大小
    width = cfg.EVAL_CROP_SIZE[0]
    height = cfg.EVAL_CROP_SIZE[1]
    pad_target = fluid.layers.assign(
        np.array([height, width]).astype('float32'))
    up = fluid.layers.assign(np.array([0]).astype('float32'))
    down = pad_target[0] - valid_shape[0]
    left = up
    right = pad_target[1] - valid_shape[1]
    paddings = fluid.layers.concat([up, down, left, right])
    paddings = fluid.layers.cast(paddings, 'int32')
    image = fluid.layers.pad2d(image, paddings=paddings, pad_value=127.5)

    # normalize
    mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
    mean = fluid.layers.assign(mean.astype('float32'))
    std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
    std = fluid.layers.assign(std.astype('float32'))
    image = (image / 255 - mean) / std
    # 使后面的网络能通过类似image.shape获取特征图的shape
    image = fluid.layers.reshape(
        image, shape=[-1, cfg.DATASET.DATA_DIM, height, width])
    return image, valid_shape, origin_shape


def build_model(main_prog=None, start_prog=None, phase=ModelPhase.TRAIN, **kwargs):
L
LielinJiang 已提交
160

L
LielinJiang 已提交
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
    if not ModelPhase.is_valid_phase(phase):
        raise ValueError("ModelPhase {} is not valid!".format(phase))
    if ModelPhase.is_train(phase):
        width = cfg.TRAIN_CROP_SIZE[0]
        height = cfg.TRAIN_CROP_SIZE[1]
    else:
        width = cfg.EVAL_CROP_SIZE[0]
        height = cfg.EVAL_CROP_SIZE[1]

    image_shape = [cfg.DATASET.DATA_DIM, height, width]
    grt_shape = [1, height, width]
    class_num = cfg.DATASET.NUM_CLASSES

    #with fluid.program_guard(main_prog, start_prog):
    #    with fluid.unique_name.guard():
    # 在导出模型的时候,增加图像标准化预处理,减小预测部署时图像的处理流程
    # 预测部署时只须对输入图像增加batch_size维度即可
    if cfg.SLIM.KNOWLEDGE_DISTILL_IS_TEACHER:
        image = main_prog.global_block()._clone_variable(kwargs['image'],
                                                         force_persistable=False)
        label = main_prog.global_block()._clone_variable(kwargs['label'],
                                                         force_persistable=False)
        mask = main_prog.global_block()._clone_variable(kwargs['mask'],
                                                        force_persistable=False)
    else:
        if ModelPhase.is_predict(phase):
            origin_image = fluid.layers.data(
                name='image',
                shape=[-1, -1, -1, cfg.DATASET.DATA_DIM],
                dtype='float32',
                append_batch_size=False)
            image, valid_shape, origin_shape = export_preprocess(
                origin_image)

        else:
            image = fluid.layers.data(
                name='image', shape=image_shape, dtype='float32')
        label = fluid.layers.data(
            name='label', shape=grt_shape, dtype='int32')
        mask = fluid.layers.data(
            name='mask', shape=grt_shape, dtype='int32')


    # use PyReader when doing traning and evaluation
    if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
        py_reader = None
        if not cfg.SLIM.KNOWLEDGE_DISTILL_IS_TEACHER:
            py_reader = fluid.io.PyReader(
                feed_list=[image, label, mask],
                capacity=cfg.DATALOADER.BUF_SIZE,
                iterable=False,
                use_double_buffer=True)

    loss_type = cfg.SOLVER.LOSS
    if not isinstance(loss_type, list):
        loss_type = list(loss_type)

    # dice_loss或bce_loss只适用两类分割中
    if class_num > 2 and (("dice_loss" in loss_type) or
                          ("bce_loss" in loss_type)):
        raise Exception(
            "dice loss and bce loss is only applicable to binary classfication"
        )

    # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1
    if ("dice_loss" in loss_type) or ("bce_loss" in loss_type):
        class_num = 1
        if "softmax_loss" in loss_type:
            raise Exception(
                "softmax loss can not combine with dice loss or bce loss"
            )
    logits = seg_model(image, class_num)

    # 根据选择的loss函数计算相应的损失函数
    if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
        loss_valid = False
        avg_loss_list = []
        valid_loss = []
        if "softmax_loss" in loss_type:
            weight = cfg.SOLVER.CROSS_ENTROPY_WEIGHT
            avg_loss_list.append(
                multi_softmax_with_loss(logits, label, mask, class_num, weight))
            loss_valid = True
            valid_loss.append("softmax_loss")
        if "dice_loss" in loss_type:
            avg_loss_list.append(multi_dice_loss(logits, label, mask))
            loss_valid = True
            valid_loss.append("dice_loss")
        if "bce_loss" in loss_type:
            avg_loss_list.append(multi_bce_loss(logits, label, mask))
            loss_valid = True
            valid_loss.append("bce_loss")
        if not loss_valid:
            raise Exception(
                "SOLVER.LOSS: {} is set wrong. it should "
                "include one of (softmax_loss, bce_loss, dice_loss) at least"
                " example: ['softmax_loss'], ['dice_loss'], ['bce_loss', 'dice_loss']"
                .format(cfg.SOLVER.LOSS))

        invalid_loss = [x for x in loss_type if x not in valid_loss]
        if len(invalid_loss) > 0:
            print(
                "Warning: the loss {} you set is invalid. it will not be included in loss computed."
                .format(invalid_loss))

        avg_loss = 0
        for i in range(0, len(avg_loss_list)):
            avg_loss += avg_loss_list[i]

    #get pred result in original size
    if isinstance(logits, tuple):
        logit = logits[0]
    else:
        logit = logits

    if logit.shape[2:] != label.shape[2:]:
        logit = fluid.layers.resize_bilinear(logit, label.shape[2:])

    # return image input and logit output for inference graph prune
    if ModelPhase.is_predict(phase):
        # 两类分割中,使用dice_loss或bce_loss返回的logit为单通道,进行到两通道的变换
        if class_num == 1:
            logit = sigmoid_to_softmax(logit)
        else:
            logit = softmax(logit)

        # 获取有效部分
        logit = fluid.layers.slice(
            logit, axes=[2, 3], starts=[0, 0], ends=valid_shape)

        logit = fluid.layers.resize_bilinear(
            logit,
            out_shape=origin_shape,
            align_corners=False,
            align_mode=0)
        logit = fluid.layers.argmax(logit, axis=1)
        return origin_image, logit

    if class_num == 1:
        out = sigmoid_to_softmax(logit)
        out = fluid.layers.transpose(out, [0, 2, 3, 1])
    else:
        out = fluid.layers.transpose(logit, [0, 2, 3, 1])

    pred = fluid.layers.argmax(out, axis=3)
    pred = fluid.layers.unsqueeze(pred, axes=[3])
    if ModelPhase.is_visual(phase):
        if class_num == 1:
            logit = sigmoid_to_softmax(logit)
        else:
            logit = softmax(logit)
        return pred, logit

    if ModelPhase.is_eval(phase):
        return py_reader, avg_loss, pred, label, mask

    if ModelPhase.is_train(phase):
        decayed_lr = None
        if not cfg.SLIM.KNOWLEDGE_DISTILL:
            optimizer = solver.Solver(main_prog, start_prog)
            decayed_lr = optimizer.optimise(avg_loss)
        # optimizer = solver.Solver(main_prog, start_prog)
        # decayed_lr = optimizer.optimise(avg_loss)
        return py_reader, avg_loss, decayed_lr, pred, label, mask, image


def to_int(string, dest="I"):
    return struct.unpack(dest, string)[0]


def parse_shape_from_file(filename):
    with open(filename, "rb") as file:
        version = file.read(4)
        lod_level = to_int(file.read(8), dest="Q")
        for i in range(lod_level):
            _size = to_int(file.read(8), dest="Q")
            _ = file.read(_size)
        version = file.read(4)
        tensor_desc_size = to_int(file.read(4))
        tensor_desc = VarType.TensorDesc()
        tensor_desc.ParseFromString(file.read(tensor_desc_size))
    return tuple(tensor_desc.dims)