resnet_vd.py 13.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import math

import numpy as np
import paddle
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, Dropout
from paddle.nn import SyncBatchNorm as BatchNorm

from paddleseg.utils import utils
M
michaelowenliu 已提交
31
from paddleseg.models.common import layer_libs, activation
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
from paddleseg.cvlibs import manager

__all__ = [
    "ResNet18_vd", "ResNet34_vd", "ResNet50_vd", "ResNet101_vd", "ResNet152_vd"
]


class ConvBNLayer(fluid.dygraph.Layer):
    def __init__(
            self,
            num_channels,
            num_filters,
            filter_size,
            stride=1,
            dilation=1,
            groups=1,
            is_vd_mode=False,
            act=None,
            name=None,
    ):
        super(ConvBNLayer, self).__init__()

        self.is_vd_mode = is_vd_mode
        self._pool2d_avg = Pool2D(
            pool_size=2,
            pool_stride=2,
            pool_padding=0,
            pool_type='avg',
            ceil_mode=True)
        self._conv = Conv2D(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=filter_size,
            stride=stride,
            padding=(filter_size - 1) // 2 if dilation == 1 else 0,
            dilation=dilation,
            groups=groups,
            act=None,
            param_attr=ParamAttr(name=name + "_weights"),
            bias_attr=False)
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        self._batch_norm = BatchNorm(
            num_filters,
            weight_attr=ParamAttr(name=bn_name + '_scale'),
            bias_attr=ParamAttr(bn_name + '_offset'))
M
michaelowenliu 已提交
80
        self._act_op = activation.Activation(act=act)
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215

    def forward(self, inputs):
        if self.is_vd_mode:
            inputs = self._pool2d_avg(inputs)
        y = self._conv(inputs)
        y = self._batch_norm(y)
        y = self._act_op(y)

        return y


class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 dilation=1,
                 name=None):
        super(BottleneckBlock, self).__init__()

        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=1,
            act='relu',
            name=name + "_branch2a")

        self.dilation = dilation

        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            dilation=dilation,
            name=name + "_branch2b")
        self.conv2 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters * 4,
            filter_size=1,
            act=None,
            name=name + "_branch2c")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters * 4,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first or stride == 1 else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)

        ####################################################################
        # If given dilation rate > 1, using corresponding padding
        if self.dilation > 1:
            padding = self.dilation
            y = fluid.layers.pad(
                y, [0, 0, 0, 0, padding, padding, padding, padding])
        #####################################################################
        conv1 = self.conv1(y)
        conv2 = self.conv2(conv1)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)

        y = fluid.layers.elementwise_add(x=short, y=conv2)
        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class BasicBlock(fluid.dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 stride,
                 shortcut=True,
                 if_first=False,
                 name=None):
        super(BasicBlock, self).__init__()
        self.stride = stride
        self.conv0 = ConvBNLayer(
            num_channels=num_channels,
            num_filters=num_filters,
            filter_size=3,
            stride=stride,
            act='relu',
            name=name + "_branch2a")
        self.conv1 = ConvBNLayer(
            num_channels=num_filters,
            num_filters=num_filters,
            filter_size=3,
            act=None,
            name=name + "_branch2b")

        if not shortcut:
            self.short = ConvBNLayer(
                num_channels=num_channels,
                num_filters=num_filters,
                filter_size=1,
                stride=1,
                is_vd_mode=False if if_first else True,
                name=name + "_branch1")

        self.shortcut = shortcut

    def forward(self, inputs):
        y = self.conv0(inputs)
        conv1 = self.conv1(y)

        if self.shortcut:
            short = inputs
        else:
            short = self.short(inputs)
        y = fluid.layers.elementwise_add(x=short, y=conv1)

        layer_helper = LayerHelper(self.full_name(), act='relu')
        return layer_helper.append_activation(y)


class ResNet_vd(fluid.dygraph.Layer):
    def __init__(self,
                 backbone_pretrained=None,
                 layers=50,
                 class_dim=1000,
                 output_stride=None,
M
michaelowenliu 已提交
216
                 multi_grid=(1, 1, 1)):
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
        super(ResNet_vd, self).__init__()

        self.layers = layers
        supported_layers = [18, 34, 50, 101, 152, 200]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(
                supported_layers, layers)

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        elif layers == 200:
            depth = [3, 12, 48, 3]
        num_channels = [64, 256, 512, 1024
                        ] if layers >= 50 else [64, 64, 128, 256]
        num_filters = [64, 128, 256, 512]

        dilation_dict = None
        if output_stride == 8:
            dilation_dict = {2: 2, 3: 4}
        elif output_stride == 16:
            dilation_dict = {3: 2}

        self.conv1_1 = ConvBNLayer(
            num_channels=3,
            num_filters=32,
            filter_size=3,
            stride=2,
            act='relu',
            name="conv1_1")
        self.conv1_2 = ConvBNLayer(
            num_channels=32,
            num_filters=32,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_2")
        self.conv1_3 = ConvBNLayer(
            num_channels=32,
            num_filters=64,
            filter_size=3,
            stride=1,
            act='relu',
            name="conv1_3")
        self.pool2d_max = Pool2D(
            pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')

        # self.block_list = []
        self.stage_list = []
        if layers >= 50:
            for block in range(len(depth)):
                shortcut = False
                block_list = []
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)

                    ###############################################################################
                    # Add dilation rate for some segmentation tasks, if dilation_dict is not None.
                    dilation_rate = dilation_dict[
                        block] if dilation_dict and block in dilation_dict else 1

                    # Actually block here is 'stage', and i is 'block' in 'stage'
                    # At the stage 4, expand the the dilation_rate using multi_grid, default (1, 2, 4)
                    if block == 3:
                        dilation_rate = dilation_rate * multi_grid[i]
                    #print("stage {}, block {}: dilation rate".format(block, i), dilation_rate)
                    ###############################################################################

                    bottleneck_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BottleneckBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block] * 4,
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0
                            and dilation_rate == 1 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name,
                            dilation=dilation_rate))

                    block_list.append(bottleneck_block)
                    shortcut = True
                self.stage_list.append(block_list)
        else:
            for block in range(len(depth)):
                shortcut = False
                block_list = []
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    basic_block = self.add_sublayer(
                        'bb_%d_%d' % (block, i),
                        BasicBlock(
                            num_channels=num_channels[block]
                            if i == 0 else num_filters[block],
                            num_filters=num_filters[block],
                            stride=2 if i == 0 and block != 0 else 1,
                            shortcut=shortcut,
                            if_first=block == i == 0,
                            name=conv_name))
                    block_list.append(basic_block)
                    shortcut = True
                self.stage_list.append(block_list)

        self.pool2d_avg = Pool2D(
            pool_size=7, pool_type='avg', global_pooling=True)

        self.pool2d_avg_channels = num_channels[-1] * 2

        stdv = 1.0 / math.sqrt(self.pool2d_avg_channels * 1.0)

        self.out = Linear(
            self.pool2d_avg_channels,
            class_dim,
            param_attr=ParamAttr(
                initializer=fluid.initializer.Uniform(-stdv, stdv),
                name="fc_0.w_0"),
            bias_attr=ParamAttr(name="fc_0.b_0"))

        self.init_weight(backbone_pretrained)

    def forward(self, inputs):
        y = self.conv1_1(inputs)
        y = self.conv1_2(y)
        y = self.conv1_3(y)
        y = self.pool2d_max(y)

        # A feature list saves the output feature map of each stage.
        feat_list = []
        for i, stage in enumerate(self.stage_list):
            for j, block in enumerate(stage):
                y = block(y)
                #print("stage {} block {}".format(i+1, j+1), y.shape)
            feat_list.append(y)

        y = self.pool2d_avg(y)
        y = fluid.layers.reshape(y, shape=[-1, self.pool2d_avg_channels])
        y = self.out(y)
        return y, feat_list

    # def init_weight(self, pretrained_model=None):

    #     if pretrained_model is not None:
    #         if os.path.exists(pretrained_model):
    #             utils.load_pretrained_model(self, pretrained_model)

    def init_weight(self, pretrained_model=None):
        """
        Initialize the parameters of model parts.
        Args:
            pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
        """
        if pretrained_model is not None:
            if os.path.exists(pretrained_model):
                utils.load_pretrained_model(self, pretrained_model)
            else:
                raise Exception('Pretrained model is not found: {}'.format(
                    pretrained_model))


def ResNet18_vd(**args):
    model = ResNet_vd(layers=18, **args)
    return model


def ResNet34_vd(**args):
    model = ResNet_vd(layers=34, **args)
    return model


@manager.BACKBONES.add_component
def ResNet50_vd(**args):
    model = ResNet_vd(layers=50, **args)
    return model


@manager.BACKBONES.add_component
def ResNet101_vd(**args):
    model = ResNet_vd(layers=101, **args)
    return model


def ResNet152_vd(**args):
    model = ResNet_vd(layers=152, **args)
    return model


def ResNet200_vd(**args):
    model = ResNet_vd(layers=200, **args)
    return model