train_distill.py 21.4 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
SEG_PATH = os.path.join(LOCAL_PATH, "../../", "pdseg")
sys.path.append(SEG_PATH)
L
LielinJiang 已提交
26

L
LielinJiang 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
import argparse
import pprint
import random
import shutil
import functools

import paddle
import numpy as np
import paddle.fluid as fluid

from utils.config import cfg
from utils.timer import Timer, calculate_eta
from metrics import ConfusionMatrix
from reader import SegDataset
from model_builder import build_model
from model_builder import ModelPhase
from model_builder import parse_shape_from_file
from eval import evaluate
from vis import visualize
from utils import dist_utils

import solver
from paddleslim.dist.single_distiller import merge, l2_loss

def parse_args():
    parser = argparse.ArgumentParser(description='PaddleSeg training')
    parser.add_argument(
        '--cfg',
        dest='cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument(
        '--teacher_cfg',
        dest='teacher_cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument(
        '--use_gpu',
        dest='use_gpu',
        help='Use gpu or cpu',
        action='store_true',
        default=False)
    parser.add_argument(
        '--use_mpio',
        dest='use_mpio',
        help='Use multiprocess I/O or not',
        action='store_true',
        default=False)
    parser.add_argument(
        '--log_steps',
        dest='log_steps',
        help='Display logging information at every log_steps',
        default=10,
        type=int)
    parser.add_argument(
        '--debug',
        dest='debug',
        help='debug mode, display detail information of training',
        action='store_true')
    parser.add_argument(
        '--use_tb',
        dest='use_tb',
        help='whether to record the data during training to Tensorboard',
        action='store_true')
    parser.add_argument(
        '--tb_log_dir',
        dest='tb_log_dir',
        help='Tensorboard logging directory',
        default=None,
        type=str)
    parser.add_argument(
        '--do_eval',
        dest='do_eval',
        help='Evaluation models result on every new checkpoint',
        action='store_true')
    parser.add_argument(
        'opts',
        help='See utils/config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    parser.add_argument(
        '--enable_ce',
        dest='enable_ce',
        help='If set True, enable continuous evaluation job.'
        'This flag is only used for internal test.',
        action='store_true')
    return parser.parse_args()


def save_vars(executor, dirname, program=None, vars=None):
    """
    Temporary resolution for Win save variables compatability.
    Will fix in PaddlePaddle v1.5.2
    """

    save_program = fluid.Program()
    save_block = save_program.global_block()

    for each_var in vars:
        # NOTE: don't save the variable which type is RAW
        if each_var.type == fluid.core.VarDesc.VarType.RAW:
            continue
        new_var = save_block.create_var(
            name=each_var.name,
            shape=each_var.shape,
            dtype=each_var.dtype,
            type=each_var.type,
            lod_level=each_var.lod_level,
            persistable=True)
        file_path = os.path.join(dirname, new_var.name)
        file_path = os.path.normpath(file_path)
        save_block.append_op(
            type='save',
            inputs={'X': [new_var]},
            outputs={},
            attrs={'file_path': file_path})

    executor.run(save_program)


def save_checkpoint(exe, program, ckpt_name):
    """
    Save checkpoint for evaluation or resume training
    """
    ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name))
    print("Save model checkpoint to {}".format(ckpt_dir))
    if not os.path.isdir(ckpt_dir):
        os.makedirs(ckpt_dir)

    save_vars(
        exe,
        ckpt_dir,
        program,
        vars=list(filter(fluid.io.is_persistable, program.list_vars())))

    return ckpt_dir


def load_checkpoint(exe, program):
    """
    Load checkpoiont from pretrained model directory for resume training
    """

    print('Resume model training from:', cfg.TRAIN.RESUME_MODEL_DIR)
    if not os.path.exists(cfg.TRAIN.RESUME_MODEL_DIR):
        raise ValueError("TRAIN.PRETRAIN_MODEL {} not exist!".format(
            cfg.TRAIN.RESUME_MODEL_DIR))

    fluid.io.load_persistables(
        exe, cfg.TRAIN.RESUME_MODEL_DIR, main_program=program)

    model_path = cfg.TRAIN.RESUME_MODEL_DIR
    # Check is path ended by path spearator
    if model_path[-1] == os.sep:
        model_path = model_path[0:-1]
    epoch_name = os.path.basename(model_path)
    # If resume model is final model
    if epoch_name == 'final':
        begin_epoch = cfg.SOLVER.NUM_EPOCHS
    # If resume model path is end of digit, restore epoch status
    elif epoch_name.isdigit():
        epoch = int(epoch_name)
        begin_epoch = epoch + 1
    else:
        raise ValueError("Resume model path is not valid!")
    print("Model checkpoint loaded successfully!")

    return begin_epoch


def update_best_model(ckpt_dir):
    best_model_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model')
    if os.path.exists(best_model_dir):
        shutil.rmtree(best_model_dir)
    shutil.copytree(ckpt_dir, best_model_dir)


def print_info(*msg):
    if cfg.TRAINER_ID == 0:
        print(*msg)


def train(cfg):
    # startup_prog = fluid.Program()
    # train_prog = fluid.Program()

    drop_last = True

    dataset = SegDataset(
        file_list=cfg.DATASET.TRAIN_FILE_LIST,
        mode=ModelPhase.TRAIN,
        shuffle=True,
        data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
                for item in batch_data:
                    yield item[0], item[1], item[2]
                batch_data = []
        # If use sync batch norm strategy, drop last batch if number of samples
        # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
        if not cfg.TRAIN.SYNC_BATCH_NORM:
            for item in batch_data:
                yield item[0], item[1], item[2]

    # Get device environment
    # places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()
    # place = places[0]
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()

    # Get number of GPU
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))

    py_reader, loss, lr, pred, grts, masks, image = build_model(phase=ModelPhase.TRAIN)
    py_reader.decorate_sample_generator(
        data_generator, batch_size=batch_size_per_dev, drop_last=drop_last)

    exe = fluid.Executor(place)

    cfg.update_from_file(args.teacher_cfg_file)
    # teacher_arch = teacher_cfg.architecture
    teacher_program = fluid.Program()
    teacher_startup_program = fluid.Program()

    with fluid.program_guard(teacher_program, teacher_startup_program):
        with fluid.unique_name.guard():
            _, teacher_loss, _, _, _, _, _ = build_model(
                teacher_program, teacher_startup_program, phase=ModelPhase.TRAIN, image=image,
                label=grts, mask=masks)

    exe.run(teacher_startup_program)

    teacher_program = teacher_program.clone(for_test=True)
    ckpt_dir = cfg.SLIM.KNOWLEDGE_DISTILL_TEACHER_MODEL_DIR
    assert ckpt_dir is not None
    print('load teacher model:', ckpt_dir)
    fluid.io.load_params(exe, ckpt_dir, main_program=teacher_program)

    # cfg = load_config(FLAGS.config)
    cfg.update_from_file(args.cfg_file)
    data_name_map = {
        'image': 'image',
        'label': 'label',
        'mask': 'mask',
    }
    merge(teacher_program, fluid.default_main_program(), data_name_map, place)
L
LielinJiang 已提交
296
    distill_pairs = [['teacher_bilinear_interp_2.tmp_0', 'bilinear_interp_0.tmp_0']]
L
LielinJiang 已提交
297 298 299 300 301 302

    def distill(pairs, weight):
        """
        Add 3 pairs of distillation losses, each pair of feature maps is the
        input of teacher and student's yolov3_loss respectively
        """
L
LielinJiang 已提交
303
        loss = l2_loss(pairs[0][0], pairs[0][1])
L
LielinJiang 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
        weighted_loss = loss * weight
        return weighted_loss

    distill_loss = distill(distill_pairs, 0.1)
    cfg.update_from_file(args.cfg_file)
    optimizer = solver.Solver(None, None)
    all_loss = loss + distill_loss
    lr = optimizer.optimise(all_loss)

    exe.run(fluid.default_startup_program())

    exec_strategy = fluid.ExecutionStrategy()
    # Clear temporary variables every 100 iteration
    if args.use_gpu:
        exec_strategy.num_threads = fluid.core.get_cuda_device_count()
    exec_strategy.num_iteration_per_drop_scope = 100
    build_strategy = fluid.BuildStrategy()
    build_strategy.fuse_all_reduce_ops = False
    build_strategy.fuse_all_optimizer_ops = False
    build_strategy.fuse_elewise_add_act_ops = True
    if cfg.NUM_TRAINERS > 1 and args.use_gpu:
        dist_utils.prepare_for_multi_process(exe, build_strategy, fluid.default_main_program())
        exec_strategy.num_threads = 1

    if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu:
        if dev_count > 1:
            # Apply sync batch norm strategy
            print_info("Sync BatchNorm strategy is effective.")
            build_strategy.sync_batch_norm = True
        else:
            print_info(
                "Sync BatchNorm strategy will not be effective if GPU device"
                " count <= 1")
    compiled_train_prog = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(
        loss_name=all_loss.name,
        exec_strategy=exec_strategy,
        build_strategy=build_strategy)

    # Resume training
    begin_epoch = cfg.SOLVER.BEGIN_EPOCH
    if cfg.TRAIN.RESUME_MODEL_DIR:
        begin_epoch = load_checkpoint(exe, fluid.default_main_program())
    # Load pretrained model
    elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
        print_info('Pretrained model dir: ', cfg.TRAIN.PRETRAINED_MODEL_DIR)
        load_vars = []
        load_fail_vars = []

        def var_shape_matched(var, shape):
            """
            Check whehter persitable variable shape is match with current network
            """
            var_exist = os.path.exists(
                os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
            if var_exist:
                var_shape = parse_shape_from_file(
                    os.path.join(cfg.TRAIN.PRETRAINED_MODEL_DIR, var.name))
                return var_shape == shape
            return False

        for x in fluid.default_main_program().list_vars():
            if isinstance(x, fluid.framework.Parameter):
                shape = tuple(fluid.global_scope().find_var(
                    x.name).get_tensor().shape())
                if var_shape_matched(x, shape):
                    load_vars.append(x)
                else:
                    load_fail_vars.append(x)

        fluid.io.load_vars(
            exe, dirname=cfg.TRAIN.PRETRAINED_MODEL_DIR, vars=load_vars)
        for var in load_vars:
            print_info("Parameter[{}] loaded sucessfully!".format(var.name))
        for var in load_fail_vars:
            print_info(
                "Parameter[{}] don't exist or shape does not match current network, skip"
                " to load it.".format(var.name))
        print_info("{}/{} pretrained parameters loaded successfully!".format(
            len(load_vars),
            len(load_vars) + len(load_fail_vars)))
    else:
        print_info(
            'Pretrained model dir {} not exists, training from scratch...'.
            format(cfg.TRAIN.PRETRAINED_MODEL_DIR))

    #fetch_list = [avg_loss.name, lr.name]
    fetch_list = [loss.name, 'teacher_' + teacher_loss.name, distill_loss.name, lr.name]

    if args.debug:
        # Fetch more variable info and use streaming confusion matrix to
        # calculate IoU results if in debug mode
        np.set_printoptions(
            precision=4, suppress=True, linewidth=160, floatmode="fixed")
        fetch_list.extend([pred.name, grts.name, masks.name])
        cm = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)

    if args.use_tb:
        if not args.tb_log_dir:
            print_info("Please specify the log directory by --tb_log_dir.")
            exit(1)

        from tb_paddle import SummaryWriter
        log_writer = SummaryWriter(args.tb_log_dir)

    # trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    # num_trainers = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))
    global_step = 0
    all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
    if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
        all_step += 1
    all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

    avg_loss = 0.0
    avg_t_loss = 0.0
    avg_d_loss = 0.0
    best_mIoU = 0.0

    timer = Timer()
    timer.start()
    if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
        raise ValueError(
            ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]").format(
                begin_epoch, cfg.SOLVER.NUM_EPOCHS))

    if args.use_mpio:
        print_info("Use multiprocess reader")
    else:
        print_info("Use multi-thread reader")

    for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
        py_reader.start()
        while True:
            try:
                if args.debug:
                    # Print category IoU and accuracy to check whether the
                    # traning process is corresponed to expectation
                    loss, lr, pred, grts, masks = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    cm.calculate(pred, grts, masks)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0:
                        speed = args.log_steps / timer.elapsed_time()
                        avg_loss /= args.log_steps
                        category_acc, mean_acc = cm.accuracy()
                        category_iou, mean_iou = cm.mean_iou()

                        print_info((
                            "epoch={} step={} lr={:.5f} loss={:.4f} acc={:.5f} mIoU={:.5f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, mean_acc,
                                 mean_iou, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        print_info("Category IoU: ", category_iou)
                        print_info("Category Acc: ", category_acc)
                        if args.use_tb:
                            log_writer.add_scalar('Train/mean_iou', mean_iou,
                                                  global_step)
                            log_writer.add_scalar('Train/mean_acc', mean_acc,
                                                  global_step)
                            log_writer.add_scalar('Train/loss', avg_loss,
                                                  global_step)
                            log_writer.add_scalar('Train/lr', lr[0],
                                                  global_step)
                            log_writer.add_scalar('Train/step/sec', speed,
                                                  global_step)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        cm.zero_matrix()
                        timer.restart()
                else:
                    # If not in debug mode, avoid unnessary log and calculate
                    loss, t_loss, d_loss, lr = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    avg_loss += np.mean(np.array(loss))
                    avg_t_loss += np.mean(np.array(t_loss))
                    avg_d_loss += np.mean(np.array(d_loss))
                    global_step += 1

                    if global_step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
                        avg_loss /= args.log_steps
                        avg_t_loss /= args.log_steps
                        avg_d_loss /= args.log_steps
                        speed = args.log_steps / timer.elapsed_time()
                        print((
                            "epoch={} step={} lr={:.5f} loss={:.4f} teacher loss={:.4f} distill loss={:.4f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, avg_t_loss, avg_d_loss, speed,
                                 calculate_eta(all_step - global_step, speed)))
                        if args.use_tb:
                            log_writer.add_scalar('Train/loss', avg_loss,
                                                  global_step)
                            log_writer.add_scalar('Train/lr', lr[0],
                                                  global_step)
                            log_writer.add_scalar('Train/speed', speed,
                                                  global_step)
                        sys.stdout.flush()
                        avg_loss = 0.0
                        avg_t_loss = 0.0
                        avg_d_loss = 0.0
                        timer.restart()

            except fluid.core.EOFException:
                py_reader.reset()
                break
            except Exception as e:
                print(e)

        if (epoch % cfg.TRAIN.SNAPSHOT_EPOCH == 0
                or epoch == cfg.SOLVER.NUM_EPOCHS) and cfg.TRAINER_ID == 0:
            ckpt_dir = save_checkpoint(exe, fluid.default_main_program(), epoch)

            if args.do_eval:
                print("Evaluation start")
                _, mean_iou, _, mean_acc = evaluate(
                    cfg=cfg,
                    ckpt_dir=ckpt_dir,
                    use_gpu=args.use_gpu,
                    use_mpio=args.use_mpio)
                if args.use_tb:
                    log_writer.add_scalar('Evaluate/mean_iou', mean_iou,
                                          global_step)
                    log_writer.add_scalar('Evaluate/mean_acc', mean_acc,
                                          global_step)

                if mean_iou > best_mIoU:
                    best_mIoU = mean_iou
                    update_best_model(ckpt_dir)
                    print_info("Save best model {} to {}, mIoU = {:.4f}".format(
                        ckpt_dir,
                        os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model'),
                        mean_iou))

            # Use Tensorboard to visualize results
            if args.use_tb and cfg.DATASET.VIS_FILE_LIST is not None:
                visualize(
                    cfg=cfg,
                    use_gpu=args.use_gpu,
                    vis_file_list=cfg.DATASET.VIS_FILE_LIST,
                    vis_dir="visual",
                    ckpt_dir=ckpt_dir,
                    log_writer=log_writer)
        if cfg.TRAINER_ID == 0:
            ckpt_dir = save_checkpoint(exe, fluid.default_main_program(), epoch)

    # save final model
    if cfg.TRAINER_ID == 0:
        save_checkpoint(exe, fluid.default_main_program(), 'final')


def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    if args.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

    cfg.check_and_infer()
    print_info(pprint.pformat(cfg))
    train(cfg)


if __name__ == '__main__':
    args = parse_args()
    if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True:
        print(
            "You can not set use_gpu = True in the model because you are using paddlepaddle-cpu."
        )
        print(
            "Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU."
        )
        sys.exit(1)
    main(args)