deeplabv3p.py 6.3 KB
Newer Older
M
michaelowenliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse

import paddle.fluid as fluid
from paddle.fluid.dygraph.parallel import ParallelEnv

C
chenguowei01 已提交
20 21 22 23 24
from dygraph.datasets import DATASETS
import dygraph.transforms as T
from dygraph.models import MODELS
from dygraph.utils import get_environ_info
from dygraph.core import train
M
michaelowenliu 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42


def parse_args():
    parser = argparse.ArgumentParser(description='Model training')

    # params of model
    parser.add_argument(
        '--model_name',
        dest='model_name',
        help='Model type for training, which is one of {}'.format(
            str(list(MODELS.keys()))),
        type=str,
        default='UNet')

    # params of dataset
    parser.add_argument(
        '--dataset',
        dest='dataset',
C
chenguowei01 已提交
43 44
        help="The dataset you want to train, which is one of {}".format(
            str(list(DATASETS.keys()))),
M
michaelowenliu 已提交
45 46
        type=str,
        default='OpticDiscSeg')
C
chenguowei01 已提交
47 48 49 50 51 52
    parser.add_argument(
        '--dataset_root',
        dest='dataset_root',
        help="dataset root directory",
        type=str,
        default=None)
M
michaelowenliu 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

    # params of training
    parser.add_argument(
        "--input_size",
        dest="input_size",
        help="The image size for net inputs.",
        nargs=2,
        default=[512, 512],
        type=int)
    parser.add_argument(
        '--num_epochs',
        dest='num_epochs',
        help='Number epochs for training',
        type=int,
        default=100)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        help='Mini batch size of one gpu or cpu',
        type=int,
        default=2)
    parser.add_argument(
        '--learning_rate',
        dest='learning_rate',
        help='Learning rate',
        type=float,
        default=0.01)
    parser.add_argument(
        '--pretrained_model',
        dest='pretrained_model',
        help='The path of pretrained model',
        type=str,
        default=None)
    parser.add_argument(
        '--resume_model',
        dest='resume_model',
        help='The path of resume model',
        type=str,
        default=None)
    parser.add_argument(
        '--save_interval_epochs',
        dest='save_interval_epochs',
        help='The interval epochs for save a model snapshot',
        type=int,
        default=5)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the model snapshot',
        type=str,
        default='./output')
    parser.add_argument(
        '--num_workers',
        dest='num_workers',
        help='Num workers for data loader',
        type=int,
        default=0)
    parser.add_argument(
        '--do_eval',
        dest='do_eval',
        help='Eval while training',
        action='store_true')
    parser.add_argument(
        '--log_steps',
        dest='log_steps',
        help='Display logging information at every log_steps',
        default=10,
        type=int)
    parser.add_argument(
        '--use_vdl',
        dest='use_vdl',
        help='Whether to record the data to VisualDL during training',
        action='store_true')

    return parser.parse_args()


def main(args):
    env_info = get_environ_info()
    places = fluid.CUDAPlace(ParallelEnv().dev_id) \
        if env_info['place'] == 'cuda' and fluid.is_compiled_with_cuda() \
        else fluid.CPUPlace()

C
chenguowei01 已提交
136 137 138 139
    if args.dataset not in DATASETS:
        raise Exception('`--dataset` is invalid. it should be one of {}'.format(
            str(list(DATASETS.keys()))))
    dataset = DATASETS[args.dataset]
M
michaelowenliu 已提交
140 141 142 143

    with fluid.dygraph.guard(places):
        # Creat dataset reader
        train_transforms = T.Compose([
C
chenguowei01 已提交
144
            T.RandomHorizontalFlip(0.5),
M
michaelowenliu 已提交
145 146
            T.ResizeStepScaling(0.5, 2.0, 0.25),
            T.RandomPaddingCrop(args.input_size),
C
chenguowei01 已提交
147 148
            T.RandomDistort(),
            T.Normalize(),
M
michaelowenliu 已提交
149
        ])
C
chenguowei01 已提交
150 151 152 153
        train_dataset = dataset(
            dataset_root=args.dataset_root,
            transforms=train_transforms,
            mode='train')
M
michaelowenliu 已提交
154 155 156 157 158

        eval_dataset = None
        if args.do_eval:
            eval_transforms = T.Compose(
                [T.Padding((2049, 1025)),
C
chenguowei01 已提交
159 160 161 162 163
                 T.Normalize()])
            eval_dataset = dataset(
                dataset_root=args.dataset_root,
                transforms=eval_transforms,
                mode='val')
M
michaelowenliu 已提交
164 165 166

        if args.model_name not in MODELS:
            raise Exception(
C
chenguowei01 已提交
167
                '`--model_name` is invalid. it should be one of {}'.format(
M
michaelowenliu 已提交
168 169 170 171 172 173 174 175 176
                    str(list(MODELS.keys()))))
        model = MODELS[args.model_name](num_classes=train_dataset.num_classes)

        # Creat optimizer
        # todo, may less one than len(loader)
        num_steps_each_epoch = len(train_dataset) // (
            args.batch_size * ParallelEnv().nranks)
        decay_step = args.num_epochs * num_steps_each_epoch
        lr_decay = fluid.layers.polynomial_decay(
C
chenguowei01 已提交
177
            args.learning_rate, decay_step, end_learning_rate=0, power=0.9)
M
michaelowenliu 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
        optimizer = fluid.optimizer.Momentum(
            lr_decay,
            momentum=0.9,
            parameter_list=model.parameters(),
            regularization=fluid.regularizer.L2Decay(regularization_coeff=4e-5))

        train(
            model,
            train_dataset,
            places=places,
            eval_dataset=eval_dataset,
            optimizer=optimizer,
            save_dir=args.save_dir,
            num_epochs=args.num_epochs,
            batch_size=args.batch_size,
            pretrained_model=args.pretrained_model,
            resume_model=args.resume_model,
            save_interval_epochs=args.save_interval_epochs,
            log_steps=args.log_steps,
            num_classes=train_dataset.num_classes,
            num_workers=args.num_workers,
            use_vdl=args.use_vdl)


if __name__ == '__main__':
    args = parse_args()
    main(args)