pspnet.py 4.0 KB
Newer Older
P
pengmian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

P
pengmian 已提交
16 17 18
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
P
pengmian 已提交
19

P
pengmian 已提交
20 21 22
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from models.libs.model_libs import scope, name_scope
P
pengmian 已提交
23
from models.libs.model_libs import avg_pool, conv, bn
P
pengmian 已提交
24 25 26 27
from models.backbone.resnet import ResNet as resnet_backbone
from utils.config import cfg

def get_logit_interp(input, num_classes, out_shape, name="logit"):
P
pengmian 已提交
28
    # 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
P
pengmian 已提交
29 30 31 32 33 34 35
    param_attr = fluid.ParamAttr(
        name=name + 'weights',
        regularizer=fluid.regularizer.L2DecayRegularizer(
            regularization_coeff=0.0),
        initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))

    with scope(name):
P
pengmian 已提交
36 37 38 39 40 41
        logit = conv(input,
                    num_classes,
                    filter_size=1,
                    param_attr=param_attr,
                    bias_attr=True,
                    name=name+'_conv')
P
pengmian 已提交
42 43 44
        logit_interp = fluid.layers.resize_bilinear(
                    logit, 
                    out_shape=out_shape,
P
pengmian 已提交
45
                    name=name+'_interp') 
P
pengmian 已提交
46 47 48 49
    return logit_interp


def psp_module(input, out_features):
P
pengmian 已提交
50 51 52 53 54
    # Pyramid Scene Parsing 金字塔池化模块
    # 输入:backbone输出的特征
    # 输出:对输入进行不同尺度pooling, 卷积操作后插值回原始尺寸,并concat
    #       最后进行一个卷积及BN操作
    
P
pengmian 已提交
55 56 57
    cat_layers = []
    sizes = (1,2,3,6)
    for size in sizes:
P
pengmian 已提交
58
        psp_name = "psp" + str(size)
P
pengmian 已提交
59 60
        with scope(psp_name):
            pool = fluid.layers.adaptive_pool2d(input, 
P
pengmian 已提交
61 62 63 64 65 66 67
                    pool_size=[size, size], 
                    pool_type='avg', 
                    name=psp_name+'_adapool')
            data = conv(pool, out_features, 
                    filter_size=1,
                    bias_attr=True, 
                    name= psp_name + '_conv')
P
pengmian 已提交
68 69
            data_bn = bn(data, act='relu')
            interp = fluid.layers.resize_bilinear(data_bn, 
P
pengmian 已提交
70 71
                    out_shape=input.shape[2:], 
                    name=psp_name+'_interp') 
P
pengmian 已提交
72 73 74
        cat_layers.append(interp)
    cat_layers = [input] + cat_layers[::-1]
    cat = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')
P
pengmian 已提交
75

P
pengmian 已提交
76
    psp_end_name = "psp_end"
P
pengmian 已提交
77
    with scope(psp_end_name):
P
pengmian 已提交
78
        data = conv(cat, 
P
pengmian 已提交
79 80 81 82 83
                    out_features, 
                    filter_size=3,
                    padding=1, 
                    bias_attr=True,
                    name=psp_end_name)
P
pengmian 已提交
84 85 86 87 88
        out = bn(data, act='relu')

    return out

def resnet(input):
P
pengmian 已提交
89 90 91
    # PSPNET backbone: resnet, 默认resnet50
    # end_points: resnet终止层数
    # dilation_dict: resnet block数及对应的膨胀卷积尺度
P
pengmian 已提交
92
    scale = cfg.MODEL.PSPNET.DEPTH_MULTIPLIER
P
pengmian 已提交
93 94 95 96
    layers = cfg.MODEL.PSPNET.LAYERS
    end_points = layers - 1
    dilation_dict = {2:2, 3:4}
    model = resnet_backbone(layers, scale, stem='pspnet')
P
pengmian 已提交
97 98 99
    data, _ = model.net(input, 
                        end_points=end_points, 
                        dilation_dict=dilation_dict)
P
pengmian 已提交
100 101 102 103

    return data

def pspnet(input, num_classes):
P
pengmian 已提交
104
    # Backbone: ResNet
P
pengmian 已提交
105
    res = resnet(input)
P
pengmian 已提交
106
    # PSP模块
P
pengmian 已提交
107
    psp = psp_module(res, 512)
P
pengmian 已提交
108 109 110
    dropout = fluid.layers.dropout(psp, dropout_prob=0.1, name="dropout")
    # 根据类别数决定最后一层卷积输出, 并插值回原始尺寸
    logit = get_logit_interp(dropout, num_classes, input.shape[2:])
P
pengmian 已提交
111 112
    return logit