pyramid_pool.py 5.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# -*- encoding: utf-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16

17 18 19 20 21
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import SyncBatchNorm as BatchNorm

22
from paddleseg.models.common import layer_libs
23 24


25
class ASPPModule(nn.Layer):
26
    """
27
     Atrous Spatial Pyramid Pooling
28 29

    Args:
30 31 32 33 34
        aspp_ratios (tuple): the dilation rate using in ASSP module.
        in_channels (int): the number of input channels.
        out_channels (int): the number of output channels.
        sep_conv (bool): if using separable conv in ASPP module.
        image_pooling: if augmented with image-level features.
35 36
    """

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
    def __init__(self, 
                 aspp_ratios, 
                 in_channels, 
                 out_channels, 
                 sep_conv=False, 
                 image_pooling=False):
        super(ASPPModule, self).__init__()

        self.aspp_blocks = []

        for ratio in aspp_ratios:

            if sep_conv and ratio > 1:
                conv_func = layer_libs.DepthwiseConvBnRelu
            else:
                conv_func = layer_libs.ConvBnRelu

            block = conv_func(
                in_channels=in_channels,
                out_channels=out_channels,
                kernel_size=1 if ratio == 1 else 3,
                dilation=ratio,
                padding=0 if ratio == 1 else ratio
            )
            self.aspp_blocks.append(block)
        
        out_size = len(self.aspp_blocks)

        if image_pooling:
            self.global_avg_pool = nn.Sequential(
                nn.AdaptiveAvgPool2d(output_size=(1, 1)),
                layer_libs.ConvBnRelu(in_channels, out_channels, kernel_size=1, bias_attr=False)
            )
            out_size += 1
        self.image_pooling = image_pooling

        self.conv_bn_relu = layer_libs.ConvBnRelu(
            in_channels=out_channels * out_size, 
            out_channels=out_channels, 
76 77
            kernel_size=1)

78
        self.dropout = nn.Dropout(p=0.1) # drop rate
79 80

    def forward(self, x):
81 82 83 84 85 86 87 88 89 90 91

        outputs = []
        for block in self.aspp_blocks:
            outputs.append(block(x))
        
        if self.image_pooling:
            img_avg = self.global_avg_pool(x)
            img_avg = F.resize_bilinear(img_avg, out_shape=x.shape[2:])
            outputs.append(img_avg)

        x = paddle.concat(outputs, axis=1)
92
        x = self.conv_bn_relu(x)
93
        x = self.dropout(x)
94

95 96
        return x
        
97 98 99

class PPModule(nn.Layer):
    """
100
    Pyramid pooling module orginally in PSPNet
101 102 103 104 105 106 107 108 109 110 111 112 113 114

    Args:
        in_channels (int): the number of intput channels to pyramid pooling module.
        out_channels (int): the number of output channels after pyramid pooling module.
        bin_sizes (tuple): the out size of pooled feature maps. Default to (1,2,3,6).
        dim_reduction (bool): a bool value represent if reduing dimention after pooling. Default to True.
    """

    def __init__(self,
                 in_channels,
                 out_channels,
                 bin_sizes=(1, 2, 3, 6),
                 dim_reduction=True):
        super(PPModule, self).__init__()
115

116 117 118 119 120 121 122 123 124 125 126 127
        self.bin_sizes = bin_sizes

        inter_channels = in_channels
        if dim_reduction:
            inter_channels = in_channels // len(bin_sizes)

        # we use dimension reduction after pooling mentioned in original implementation.
        self.stages = nn.LayerList([
            self._make_stage(in_channels, inter_channels, size)
            for size in bin_sizes
        ])

128
        self.conv_bn_relu2 = layer_libs.ConvBnRelu(
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
            in_channels=in_channels + inter_channels * len(bin_sizes),
            out_channels=out_channels,
            kernel_size=3,
            padding=1)

    def _make_stage(self, in_channels, out_channels, size):
        """
        Create one pooling layer.

        In our implementation, we adopt the same dimention reduction as the original paper that might be
        slightly different with other implementations. 

        After pooling, the channels are reduced to 1/len(bin_sizes) immediately, while some other implementations
        keep the channels to be same.


        Args:
            in_channels (int): the number of intput channels to pyramid pooling module.
            size (int): the out size of the pooled layer.

        Returns:
            conv (tensor): a tensor after Pyramid Pooling Module
        """

153 154
        prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
        conv = layer_libs.ConvBnRelu(
155 156
            in_channels=in_channels, out_channels=out_channels, kernel_size=1)

157
        return nn.Sequential(prior, conv)
158 159 160 161 162

    def forward(self, input):
        cat_layers = []
        for i, stage in enumerate(self.stages):
            size = self.bin_sizes[i]
163
            x = stage(input)
164 165 166 167 168 169
            x = F.resize_bilinear(x, out_shape=input.shape[2:])
            cat_layers.append(x)
        cat_layers = [input] + cat_layers[::-1]
        cat = paddle.concat(cat_layers, axis=1)
        out = self.conv_bn_relu2(cat)

170
        return out