pspnet.yaml 1.4 KB
Newer Older
P
pengmian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
EVAL_CROP_SIZE: (2049, 1025) # (width, height), for unpadding rangescaling and stepscaling
TRAIN_CROP_SIZE: (713, 713) # (width, height), for unpadding rangescaling and stepscaling
AUG:
    AUG_METHOD: "stepscaling" # choice unpadding rangescaling and stepscaling
    FIX_RESIZE_SIZE: (640, 640) # (width, height), for unpadding
    INF_RESIZE_VALUE: 500  # for rangescaling
    MAX_RESIZE_VALUE: 600  # for rangescaling
    MIN_RESIZE_VALUE: 400  # for rangescaling
    MAX_SCALE_FACTOR: 2.0  # for stepscaling
    MIN_SCALE_FACTOR: 0.5  # for stepscaling
    SCALE_STEP_SIZE: 0.25  # for stepscaling
    MIRROR: True
BATCH_SIZE: 4
DATASET:
    DATA_DIR: "./dataset/cityscapes/"
    IMAGE_TYPE: "rgb"  # choice rgb or rgba
    NUM_CLASSES: 19
    TEST_FILE_LIST: "dataset/cityscapes/val.list"
    TRAIN_FILE_LIST: "dataset/cityscapes/train.list"
    VAL_FILE_LIST: "dataset/cityscapes/val.list"
    IGNORE_INDEX: 255
FREEZE:
    MODEL_FILENAME: "model"
    PARAMS_FILENAME: "params"
MODEL:
    MODEL_NAME: "pspnet"
    DEFAULT_NORM_TYPE: "bn"
P
pennypm 已提交
28 29 30
    PSPNET:
        DEPTH_MULTIPLIER: 1
        LAYERS: 50
P
pengmian 已提交
31
TEST:
P
pennypm 已提交
32
    TEST_MODEL: "snapshots/cityscapes_pspnet50/final"
P
pengmian 已提交
33
TRAIN:
P
pennypm 已提交
34 35
    MODEL_SAVE_DIR: "snapshots/cityscapes_pspnet50/"
    PRETRAINED_MODEL_DIR: u"pretrained_model/pspnet50_bn_cityscapes/"
P
pengmian 已提交
36 37 38 39 40 41
    SNAPSHOT_EPOCH: 10
SOLVER:
    LR: 0.001
    LR_POLICY: "poly"
    OPTIMIZER: "sgd"
    NUM_EPOCHS: 700