xception.py 11.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle.fluid as fluid
C
chenguowei01 已提交
21 22 23 24
from nets.libs import scope, name_scope
from nets.libs import bn, bn_relu, relu
from nets.libs import conv
from nets.libs import separate_conv
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321

__all__ = ['xception_65', 'xception_41', 'xception_71']


def check_data(data, number):
    if type(data) == int:
        return [data] * number
    assert len(data) == number
    return data


def check_stride(s, os):
    if s <= os:
        return True
    else:
        return False


def check_points(count, points):
    if points is None:
        return False
    else:
        if isinstance(points, list):
            return (True if count in points else False)
        else:
            return (True if count == points else False)


class Xception():
    def __init__(self,
                 num_classes=None,
                 layers=65,
                 output_stride=32,
                 end_points=None,
                 decode_points=None):
        self.backbone = 'xception_' + str(layers)
        self.num_classes = num_classes
        self.output_stride = output_stride
        self.end_points = end_points
        self.decode_points = decode_points
        self.bottleneck_params = self.gen_bottleneck_params(self.backbone)

    def __call__(
            self,
            input,
    ):
        self.stride = 2
        self.block_point = 0
        self.short_cuts = dict()
        with scope(self.backbone):
            # Entry flow
            data = self.entry_flow(input)
            if check_points(self.block_point, self.end_points):
                return data, self.short_cuts

            # Middle flow
            data = self.middle_flow(data)
            if check_points(self.block_point, self.end_points):
                return data, self.short_cuts

            # Exit flow
            data = self.exit_flow(data)
            if check_points(self.block_point, self.end_points):
                return data, self.short_cuts

        if self.num_classes is not None:
            data = fluid.layers.reduce_mean(data, [2, 3], keep_dim=True)
            data = fluid.layers.dropout(data, 0.5)
            stdv = 1.0 / math.sqrt(data.shape[1] * 1.0)
            with scope("logit"):
                out = fluid.layers.fc(
                    input=data,
                    size=self.num_classes,
                    act='softmax',
                    param_attr=fluid.param_attr.ParamAttr(
                        name='weights',
                        initializer=fluid.initializer.Uniform(-stdv, stdv)),
                    bias_attr=fluid.param_attr.ParamAttr(name='bias'))

            return out
        else:
            return data

    def gen_bottleneck_params(self, backbone='xception_65'):
        if backbone == 'xception_65':
            bottleneck_params = {
                "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
                "middle_flow": (16, 1, 728),
                "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536,
                                                              2048]])
            }
        elif backbone == 'xception_41':
            bottleneck_params = {
                "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
                "middle_flow": (8, 1, 728),
                "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536,
                                                              2048]])
            }
        elif backbone == 'xception_71':
            bottleneck_params = {
                "entry_flow": (5, [2, 1, 2, 1, 2], [128, 256, 256, 728, 728]),
                "middle_flow": (16, 1, 728),
                "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536,
                                                              2048]])
            }
        else:
            raise Exception(
                "xception backbont only support xception_41/xception_65/xception_71"
            )
        return bottleneck_params

    def entry_flow(self, data):
        param_attr = fluid.ParamAttr(
            name=name_scope + 'weights',
            regularizer=None,
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.09))
        with scope("entry_flow"):
            with scope("conv1"):
                data = bn_relu(
                    conv(
                        data, 32, 3, stride=2, padding=1,
                        param_attr=param_attr),
                    eps=1e-3)
            with scope("conv2"):
                data = bn_relu(
                    conv(
                        data, 64, 3, stride=1, padding=1,
                        param_attr=param_attr),
                    eps=1e-3)

        # get entry flow params
        block_num = self.bottleneck_params["entry_flow"][0]
        strides = self.bottleneck_params["entry_flow"][1]
        chns = self.bottleneck_params["entry_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)

        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        with scope("entry_flow"):
            for i in range(block_num):
                block_point = block_point + 1
                with scope("block" + str(i + 1)):
                    stride = strides[i] if check_stride(s * strides[i],
                                                        output_stride) else 1
                    data, short_cuts = self.xception_block(
                        data, chns[i], [1, 1, stride])
                    s = s * stride
                    if check_points(block_point, self.decode_points):
                        self.short_cuts[block_point] = short_cuts[1]

        self.stride = s
        self.block_point = block_point
        return data

    def middle_flow(self, data):
        block_num = self.bottleneck_params["middle_flow"][0]
        strides = self.bottleneck_params["middle_flow"][1]
        chns = self.bottleneck_params["middle_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)

        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        with scope("middle_flow"):
            for i in range(block_num):
                block_point = block_point + 1
                with scope("block" + str(i + 1)):
                    stride = strides[i] if check_stride(s * strides[i],
                                                        output_stride) else 1
                    data, short_cuts = self.xception_block(
                        data, chns[i], [1, 1, strides[i]], skip_conv=False)
                    s = s * stride
                    if check_points(block_point, self.decode_points):
                        self.short_cuts[block_point] = short_cuts[1]

        self.stride = s
        self.block_point = block_point
        return data

    def exit_flow(self, data):
        block_num = self.bottleneck_params["exit_flow"][0]
        strides = self.bottleneck_params["exit_flow"][1]
        chns = self.bottleneck_params["exit_flow"][2]
        strides = check_data(strides, block_num)
        chns = check_data(chns, block_num)

        assert (block_num == 2)
        # params to control your flow
        s = self.stride
        block_point = self.block_point
        output_stride = self.output_stride
        with scope("exit_flow"):
            with scope('block1'):
                block_point += 1
                stride = strides[0] if check_stride(s * strides[0],
                                                    output_stride) else 1
                data, short_cuts = self.xception_block(data, chns[0],
                                                       [1, 1, stride])
                s = s * stride
                if check_points(block_point, self.decode_points):
                    self.short_cuts[block_point] = short_cuts[1]
            with scope('block2'):
                block_point += 1
                stride = strides[1] if check_stride(s * strides[1],
                                                    output_stride) else 1
                data, short_cuts = self.xception_block(
                    data,
                    chns[1], [1, 1, stride],
                    dilation=2,
                    has_skip=False,
                    activation_fn_in_separable_conv=True)
                s = s * stride
                if check_points(block_point, self.decode_points):
                    self.short_cuts[block_point] = short_cuts[1]

        self.stride = s
        self.block_point = block_point
        return data

    def xception_block(self,
                       input,
                       channels,
                       strides=1,
                       filters=3,
                       dilation=1,
                       skip_conv=True,
                       has_skip=True,
                       activation_fn_in_separable_conv=False):
        repeat_number = 3
        channels = check_data(channels, repeat_number)
        filters = check_data(filters, repeat_number)
        strides = check_data(strides, repeat_number)
        data = input
        results = []
        for i in range(repeat_number):
            with scope('separable_conv' + str(i + 1)):
                if not activation_fn_in_separable_conv:
                    data = relu(data)
                    data = separate_conv(
                        data,
                        channels[i],
                        strides[i],
                        filters[i],
                        dilation=dilation,
                        eps=1e-3)
                else:
                    data = separate_conv(
                        data,
                        channels[i],
                        strides[i],
                        filters[i],
                        dilation=dilation,
                        act=relu,
                        eps=1e-3)
                results.append(data)
        if not has_skip:
            return data, results
        if skip_conv:
            param_attr = fluid.ParamAttr(
                name=name_scope + 'weights',
                regularizer=None,
                initializer=fluid.initializer.TruncatedNormal(
                    loc=0.0, scale=0.09))
            with scope('shortcut'):
                skip = bn(
                    conv(
                        input,
                        channels[-1],
                        1,
                        strides[-1],
                        groups=1,
                        padding=0,
                        param_attr=param_attr),
                    eps=1e-3)
        else:
            skip = input
        return data + skip, results


def xception_65(num_classes=None):
    model = Xception(num_classes, 65)
    return model


def xception_41(num_classes=None):
    model = Xception(num_classes, 41)
    return model


def xception_71(num_classes=None):
    model = Xception(num_classes, 71)
    return model