xception_deeplab.py 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import paddle
18 19 20
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2d, Linear, Dropout
21 22
from paddle.nn import SyncBatchNorm as BatchNorm

23
from paddleseg.models.common import layer_libs, activation
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
from paddleseg.cvlibs import manager
from paddleseg.utils import utils

__all__ = ["Xception41_deeplab", "Xception65_deeplab", "Xception71_deeplab"]


def check_data(data, number):
    if type(data) == int:
        return [data] * number
    assert len(data) == number
    return data


def check_stride(s, os):
    if s <= os:
        return True
    else:
        return False


def check_points(count, points):
    if points is None:
        return False
    else:
        if isinstance(points, list):
            return (True if count in points else False)
        else:
            return (True if count == points else False)


def gen_bottleneck_params(backbone='xception_65'):
    if backbone == 'xception_65':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_41':
        bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (8, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    elif backbone == 'xception_71':
        bottleneck_params = {
            "entry_flow": (5, [2, 1, 2, 1, 2], [128, 256, 256, 728, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }
    else:
        raise Exception(
            "xception backbont only support xception_41/xception_65/xception_71"
        )
    return bottleneck_params


80
class ConvBNLayer(nn.Layer):
81 82 83 84 85 86 87 88 89 90
    def __init__(self,
                 input_channels,
                 output_channels,
                 filter_size,
                 stride=1,
                 padding=0,
                 act=None,
                 name=None):
        super(ConvBNLayer, self).__init__()

91 92 93 94
        self._conv = Conv2d(
            in_channels=input_channels,
            out_channels=output_channels,
            kernel_size=filter_size,
95 96 97 98
            stride=stride,
            padding=padding,
            bias_attr=False)
        self._bn = BatchNorm(
99
            num_features=output_channels, epsilon=1e-3, momentum=0.99)
100

101
        self._act_op = activation.Activation(act=act)
102 103 104 105 106 107

    def forward(self, inputs):

        return self._act_op(self._bn(self._conv(inputs)))


108
class Seperate_Conv(nn.Layer):
109 110 111 112 113 114 115 116 117 118
    def __init__(self,
                 input_channels,
                 output_channels,
                 stride,
                 filter,
                 dilation=1,
                 act=None,
                 name=None):
        super(Seperate_Conv, self).__init__()

119 120 121 122
        self._conv1 = Conv2d(
            in_channels=input_channels,
            out_channels=input_channels,
            kernel_size=filter,
123 124 125 126 127
            stride=stride,
            groups=input_channels,
            padding=(filter) // 2 * dilation,
            dilation=dilation,
            bias_attr=False)
128
        self._bn1 = BatchNorm(input_channels, epsilon=1e-3, momentum=0.99)
129

130
        self._act_op1 = activation.Activation(act=act)
131

132
        self._conv2 = Conv2d(
133 134 135 136 137 138 139
            input_channels,
            output_channels,
            1,
            stride=1,
            groups=1,
            padding=0,
            bias_attr=False)
140
        self._bn2 = BatchNorm(output_channels, epsilon=1e-3, momentum=0.99)
141

142
        self._act_op2 = activation.Activation(act=act)
143 144 145 146 147 148 149 150 151 152 153

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._bn1(x)
        x = self._act_op1(x)
        x = self._conv2(x)
        x = self._bn2(x)
        x = self._act_op2(x)
        return x


154
class Xception_Block(nn.Layer):
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
    def __init__(self,
                 input_channels,
                 output_channels,
                 strides=1,
                 filter_size=3,
                 dilation=1,
                 skip_conv=True,
                 has_skip=True,
                 activation_fn_in_separable_conv=False,
                 name=None):
        super(Xception_Block, self).__init__()

        repeat_number = 3
        output_channels = check_data(output_channels, repeat_number)
        filter_size = check_data(filter_size, repeat_number)
        strides = check_data(strides, repeat_number)

        self.has_skip = has_skip
        self.skip_conv = skip_conv
        self.activation_fn_in_separable_conv = activation_fn_in_separable_conv
        if not activation_fn_in_separable_conv:
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                dilation=dilation,
                name=name + "/separable_conv3")
        else:
            self._conv1 = Seperate_Conv(
                input_channels,
                output_channels[0],
                stride=strides[0],
                filter=filter_size[0],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv1")
            self._conv2 = Seperate_Conv(
                output_channels[0],
                output_channels[1],
                stride=strides[1],
                filter=filter_size[1],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv2")
            self._conv3 = Seperate_Conv(
                output_channels[1],
                output_channels[2],
                stride=strides[2],
                filter=filter_size[2],
                act="relu",
                dilation=dilation,
                name=name + "/separable_conv3")

        if has_skip and skip_conv:
            self._short = ConvBNLayer(
                input_channels,
                output_channels[-1],
                1,
                stride=strides[-1],
                padding=0,
                name=name + "/shortcut")

    def forward(self, inputs):
        if not self.activation_fn_in_separable_conv:
234
            x = F.relu(inputs)
235
            x = self._conv1(x)
236
            x = F.relu(x)
237
            x = self._conv2(x)
238
            x = F.relu(x)
239 240 241 242 243 244 245 246 247 248 249
            x = self._conv3(x)
        else:
            x = self._conv1(inputs)
            x = self._conv2(x)
            x = self._conv3(x)
        if self.has_skip is False:
            return x
        if self.skip_conv:
            skip = self._short(inputs)
        else:
            skip = inputs
250
        return x + skip
251 252


253
class XceptionDeeplab(nn.Layer):
254 255 256 257 258

    #def __init__(self, backbone, class_dim=1000):
    # add output_stride
    def __init__(self,
                 backbone,
259
                 pretrained=None,
260 261 262 263 264 265 266
                 output_stride=16,
                 class_dim=1000):

        super(XceptionDeeplab, self).__init__()

        bottleneck_params = gen_bottleneck_params(backbone)
        self.backbone = backbone
267
        self.feat_channels = [128, 2048]
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373

        self._conv1 = ConvBNLayer(
            3,
            32,
            3,
            stride=2,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv1")
        self._conv2 = ConvBNLayer(
            32,
            64,
            3,
            stride=1,
            padding=1,
            act="relu",
            name=self.backbone + "/entry_flow/conv2")
        """
            bottleneck_params = {
            "entry_flow": (3, [2, 2, 2], [128, 256, 728]),
            "middle_flow": (16, 1, 728),
            "exit_flow": (2, [2, 1], [[728, 1024, 1024], [1536, 1536, 2048]])
        }

        if output_stride == 16:
            entry_block3_stride = 2
            middle_block_dilation = 1
            exit_block_dilations = (1, 2)
        elif output_stride == 8:
            entry_block3_stride = 1
            middle_block_dilation = 2
            exit_block_dilations = (2, 4)

        """
        self.block_num = bottleneck_params["entry_flow"][0]
        self.strides = bottleneck_params["entry_flow"][1]
        self.chns = bottleneck_params["entry_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)

        self.entry_flow = []
        self.middle_flow = []

        self.stride = 2
        self.output_stride = output_stride
        s = self.stride

        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/entry_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=64 if i == 0 else self.chns[i - 1],
                    output_channels=self.chns[i],
                    strides=[1, 1, self.stride],
                    name=self.backbone + "/entry_flow/block" + str(i + 1)))
            self.entry_flow.append(xception_block)
            s = s * stride
        self.stride = s

        self.block_num = bottleneck_params["middle_flow"][0]
        self.strides = bottleneck_params["middle_flow"][1]
        self.chns = bottleneck_params["middle_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
        s = self.stride

        for i in range(self.block_num):
            stride = self.strides[i] if check_stride(s * self.strides[i],
                                                     self.output_stride) else 1
            xception_block = self.add_sublayer(
                self.backbone + "/middle_flow/block" + str(i + 1),
                Xception_Block(
                    input_channels=728,
                    output_channels=728,
                    strides=[1, 1, self.strides[i]],
                    skip_conv=False,
                    name=self.backbone + "/middle_flow/block" + str(i + 1)))
            self.middle_flow.append(xception_block)
            s = s * stride
        self.stride = s

        self.block_num = bottleneck_params["exit_flow"][0]
        self.strides = bottleneck_params["exit_flow"][1]
        self.chns = bottleneck_params["exit_flow"][2]
        self.strides = check_data(self.strides, self.block_num)
        self.chns = check_data(self.chns, self.block_num)
        s = self.stride
        stride = self.strides[0] if check_stride(s * self.strides[0],
                                                 self.output_stride) else 1
        self._exit_flow_1 = Xception_Block(
            728,
            self.chns[0], [1, 1, stride],
            name=self.backbone + "/exit_flow/block1")
        s = s * stride
        stride = self.strides[1] if check_stride(s * self.strides[1],
                                                 self.output_stride) else 1
        self._exit_flow_2 = Xception_Block(
            self.chns[0][-1],
            self.chns[1], [1, 1, stride],
            dilation=2,
            has_skip=False,
            activation_fn_in_separable_conv=True,
            name=self.backbone + "/exit_flow/block2")

374
        utils.load_pretrained_model(self, pretrained)
375 376 377 378 379 380 381 382 383 384 385 386 387 388

    def forward(self, inputs):
        x = self._conv1(inputs)
        x = self._conv2(x)
        feat_list = []
        for i, ef in enumerate(self.entry_flow):
            x = ef(x)
            if i == 0:
                feat_list.append(x)
        for mf in self.middle_flow:
            x = mf(x)
        x = self._exit_flow_1(x)
        x = self._exit_flow_2(x)
        feat_list.append(x)
389
        return feat_list
390 391


392
@manager.BACKBONES.add_component
393 394 395 396 397 398 399 400 401 402 403
def Xception41_deeplab(**args):
    model = XceptionDeeplab('xception_41', **args)
    return model


@manager.BACKBONES.add_component
def Xception65_deeplab(**args):
    model = XceptionDeeplab("xception_65", **args)
    return model


404
@manager.BACKBONES.add_component
405 406 407
def Xception71_deeplab(**args):
    model = XceptionDeeplab("xception_71", **args)
    return model