load_model.py 3.6 KB
Newer Older
L
LutaoChu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import yaml
import os.path as osp
import six
import copy
from collections import OrderedDict
import paddle.fluid as fluid
from paddle.fluid.framework import Parameter
22 23
from utils import logging
import models
L
LutaoChu 已提交
24 25 26 27 28 29 30 31 32


def load_model(model_dir):
    if not osp.exists(osp.join(model_dir, "model.yml")):
        raise Exception("There's not model.yml in {}".format(model_dir))
    with open(osp.join(model_dir, "model.yml")) as f:
        info = yaml.load(f.read(), Loader=yaml.Loader)
    status = info['status']

33 34 35
    if not hasattr(models, info['Model']):
        raise Exception("There's no attribute {} in models".format(
            info['Model']))
L
LutaoChu 已提交
36

37
    model = getattr(models, info['Model'])(**info['_init_params'])
L
LutaoChu 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    if status == "Normal" or \
            status == "Prune":
        startup_prog = fluid.Program()
        model.test_prog = fluid.Program()
        with fluid.program_guard(model.test_prog, startup_prog):
            with fluid.unique_name.guard():
                model.test_inputs, model.test_outputs = model.build_net(
                    mode='test')
        model.test_prog = model.test_prog.clone(for_test=True)
        model.exe.run(startup_prog)
        if status == "Prune":
            from .slim.prune import update_program
            model.test_prog = update_program(model.test_prog, model_dir,
                                             model.places[0])
        import pickle
        with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
            load_dict = pickle.load(f)
        fluid.io.set_program_state(model.test_prog, load_dict)

    elif status == "Infer" or \
            status == "Quant":
        [prog, input_names, outputs] = fluid.io.load_inference_model(
            model_dir, model.exe, params_filename='__params__')
        model.test_prog = prog
        test_outputs_info = info['_ModelInputsOutputs']['test_outputs']
        model.test_inputs = OrderedDict()
        model.test_outputs = OrderedDict()
        for name in input_names:
            model.test_inputs[name] = model.test_prog.global_block().var(name)
        for i, out in enumerate(outputs):
            var_desc = test_outputs_info[i]
            model.test_outputs[var_desc[0]] = out
    if 'Transforms' in info:
        model.test_transforms = build_transforms(info['Transforms'])
        model.eval_transforms = copy.deepcopy(model.test_transforms)

    if '_Attributes' in info:
        for k, v in info['_Attributes'].items():
            if k in model.__dict__:
                model.__dict__[k] = v

    logging.info("Model[{}] loaded.".format(info['Model']))
    return model


def build_transforms(transforms_info):
84
    from transforms import transforms as T
L
LutaoChu 已提交
85 86 87 88 89 90 91 92 93 94
    transforms = list()
    for op_info in transforms_info:
        op_name = list(op_info.keys())[0]
        op_attr = op_info[op_name]
        if not hasattr(T, op_name):
            raise Exception(
                "There's no operator named '{}' in transforms".format(op_name))
        transforms.append(getattr(T, op_name)(**op_attr))
    eval_transforms = T.Compose(transforms)
    return eval_transforms