layer_libs.py 3.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# -*- encoding: utf-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle import nn
import paddle.nn.functional as F
from paddle.nn import Conv2d
from paddle.nn import SyncBatchNorm as BatchNorm


C
chenguowei01 已提交
23
class ConvBNRelu(nn.Layer):
24 25
    def __init__(self, in_channels, out_channels, kernel_size, **kwargs):

C
chenguowei01 已提交
26
        super(ConvBNRelu, self).__init__()
27 28 29 30 31 32 33 34 35 36 37 38

        self.conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs)

        self.batch_norm = BatchNorm(out_channels)

    def forward(self, x):
        x = self.conv(x)
        x = self.batch_norm(x)
        x = F.relu(x)
        return x


C
chenguowei01 已提交
39
class ConvBN(nn.Layer):
40 41
    def __init__(self, in_channels, out_channels, kernel_size, **kwargs):

C
chenguowei01 已提交
42
        super(ConvBN, self).__init__()
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

        self.conv = Conv2d(in_channels, out_channels, kernel_size, **kwargs)

        self.batch_norm = BatchNorm(out_channels)

    def forward(self, x):
        x = self.conv(x)
        x = self.batch_norm(x)
        return x


class ConvReluPool(nn.Layer):
    def __init__(self, in_channels, out_channels):
        super(ConvReluPool, self).__init__()
        self.conv = Conv2d(
            in_channels,
            out_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            dilation=1)

    def forward(self, x):
        x = self.conv(x)
        x = F.relu(x)
        x = F.pool2d(x, pool_size=2, pool_type="max", pool_stride=2)
        return x


C
chenguowei01 已提交
72
class DepthwiseConvBNRelu(nn.Layer):
73
    def __init__(self, in_channels, out_channels, kernel_size, **kwargs):
C
chenguowei01 已提交
74 75
        super(DepthwiseConvBNRelu, self).__init__()
        self.depthwise_conv = ConvBN(
76 77 78 79 80
            in_channels,
            out_channels=in_channels,
            kernel_size=kernel_size,
            groups=in_channels,
            **kwargs)
C
chenguowei01 已提交
81
        self.piontwise_conv = ConvBNRelu(
82 83 84 85 86 87 88 89
            in_channels, out_channels, kernel_size=1, groups=1)

    def forward(self, x):
        x = self.depthwise_conv(x)
        x = self.piontwise_conv(x)
        return x


90
class AuxLayer(nn.Layer):
91
    """
92
    The auxilary layer implementation for auxilary loss
93 94

    Args:
95 96 97 98
        in_channels (int): the number of input channels.
        inter_channels (int): intermediate channels.
        out_channels (int): the number of output channels, which is usually num_classes.
        dropout_prob (float): the droput rate. Default to 0.1.
99 100
    """

101 102 103 104 105 106 107
    def __init__(self,
                 in_channels,
                 inter_channels,
                 out_channels,
                 dropout_prob=0.1):
        super(AuxLayer, self).__init__()

C
chenguowei01 已提交
108
        self.conv_bn_relu = ConvBNRelu(
109 110 111 112
            in_channels=in_channels,
            out_channels=inter_channels,
            kernel_size=3,
            padding=1)
113

114 115 116 117
        self.conv = nn.Conv2d(
            in_channels=inter_channels,
            out_channels=out_channels,
            kernel_size=1)
118

119
        self.dropout_prob = dropout_prob
120 121

    def forward(self, x):
122 123 124 125
        x = self.conv_bn_relu(x)
        x = F.dropout(x, p=self.dropout_prob)
        x = self.conv(x)
        return x