config.py 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import codecs
import os
from typing import Any, Callable
C
chenguowei01 已提交
18
import pprint
19 20

import yaml
C
chenguowei01 已提交
21 22
import paddle
import paddle.nn.functional as F
23 24

import paddleseg.cvlibs.manager as manager
C
chenguowei01 已提交
25
from paddleseg.utils import logger
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41


class Config(object):
    '''
    Training config.

    Args:
        path(str) : the path of config file, supports yaml format only
    '''

    def __init__(self, path: str):
        if not os.path.exists(path):
            raise FileNotFoundError('File {} does not exist'.format(path))

        if path.endswith('yml') or path.endswith('yaml'):
            dic = self._parse_from_yaml(path)
C
chenguowei01 已提交
42
            logger.info('\n' + pprint.pformat(dic))
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
            self._build(dic)
        else:
            raise RuntimeError('Config file should in yaml format!')

    def _update_dic(self, dic, base_dic):
        """
        update config from dic based base_dic
        """
        base_dic = base_dic.copy()
        for key, val in dic.items():
            if isinstance(val, dict) and key in base_dic:
                base_dic[key] = self._update_dic(val, base_dic[key])
            else:
                base_dic[key] = val
        dic = base_dic
        return dic

    def _parse_from_yaml(self, path: str):
        '''Parse a yaml file and build config'''
        with codecs.open(path, 'r', 'utf-8') as file:
            dic = yaml.load(file, Loader=yaml.FullLoader)
        if '_base_' in dic:
            cfg_dir = os.path.dirname(path)
            base_path = dic.pop('_base_')
            base_path = os.path.join(cfg_dir, base_path)
            base_dic = self._parse_from_yaml(base_path)
            dic = self._update_dic(dic, base_dic)
        return dic

    def _build(self, dic: dict):
        '''Build config from dictionary'''
        dic = dic.copy()

        self._batch_size = dic.get('batch_size', 1)
        self._iters = dic.get('iters')

        if 'model' not in dic:
            raise RuntimeError()
        self._model_cfg = dic['model']
        self._model = None

        self._train_dataset = dic.get('train_dataset')
        self._val_dataset = dic.get('val_dataset')

        self._learning_rate_cfg = dic.get('learning_rate', {})
        self._learning_rate = self._learning_rate_cfg.get('value')
        self._decay = self._learning_rate_cfg.get('decay', {
            'type': 'poly',
            'power': 0.9
        })

        self._loss_cfg = dic.get('loss', {})
        self._losses = None

        self._optimizer_cfg = dic.get('optimizer', {})

    def update(self,
               learning_rate: float = None,
               batch_size: int = None,
               iters: int = None):
        '''Update config'''
        if learning_rate:
            self._learning_rate = learning_rate

        if batch_size:
            self._batch_size = batch_size

        if iters:
            self._iters = iters

    @property
    def batch_size(self) -> int:
        return self._batch_size

    @property
    def iters(self) -> int:
        if not self._iters:
            raise RuntimeError('No iters specified in the configuration file.')
        return self._iters

    @property
    def learning_rate(self) -> float:
        if not self._learning_rate:
            raise RuntimeError(
                'No learning rate specified in the configuration file.')

        if self.decay_type == 'poly':
            lr = self._learning_rate
            args = self.decay_args
            args.setdefault('decay_steps', self.iters)
C
chenguowei01 已提交
133
            args.setdefault('end_lr', 0)
C
chenguowei01 已提交
134
            return paddle.optimizer.PolynomialLR(lr, **args)
135 136 137 138
        else:
            raise RuntimeError('Only poly decay support.')

    @property
C
chenguowei01 已提交
139
    def optimizer(self) -> paddle.optimizer.Optimizer:
140 141 142 143
        if self.optimizer_type == 'sgd':
            lr = self.learning_rate
            args = self.optimizer_args
            args.setdefault('momentum', 0.9)
C
chenguowei01 已提交
144 145
            return paddle.optimizer.Momentum(
                lr, parameters=self.model.parameters(), **args)
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        else:
            raise RuntimeError('Only sgd optimizer support.')

    @property
    def optimizer_type(self) -> str:
        otype = self._optimizer_cfg.get('type')
        if not otype:
            raise RuntimeError(
                'No optimizer type specified in the configuration file.')
        return otype

    @property
    def optimizer_args(self) -> dict:
        args = self._optimizer_cfg.copy()
        args.pop('type')
        return args

    @property
    def decay_type(self) -> str:
        return self._decay['type']

    @property
    def decay_args(self) -> dict:
        args = self._decay.copy()
        args.pop('type')
        return args

    @property
    def loss(self) -> list:
        if not self._losses:
            args = self._loss_cfg.copy()
            self._losses = dict()
            for key, val in args.items():
                if key == 'types':
                    self._losses['types'] = []
                    for item in args['types']:
                        self._losses['types'].append(self._load_object(item))
                else:
                    self._losses[key] = val
            if len(self._losses['coef']) != len(self._losses['types']):
                raise RuntimeError(
                    'The length of coef should equal to types in loss config: {} != {}.'
                    .format(
                        len(self._losses['coef']), len(self._losses['types'])))
        return self._losses

    @property
    def model(self) -> Callable:
        if not self._model:
            self._model = self._load_object(self._model_cfg)
        return self._model

    @property
    def train_dataset(self) -> Any:
        if not self._train_dataset:
            return None
        return self._load_object(self._train_dataset)

    @property
    def val_dataset(self) -> Any:
        if not self._val_dataset:
            return None
        return self._load_object(self._val_dataset)

    def _load_component(self, com_name: str) -> Any:
        com_list = [
            manager.MODELS, manager.BACKBONES, manager.DATASETS,
            manager.TRANSFORMS, manager.LOSSES
        ]

        for com in com_list:
            if com_name in com.components_dict:
                return com[com_name]
        else:
            raise RuntimeError(
                'The specified component was not found {}.'.format(com_name))

    def _load_object(self, cfg: dict) -> Any:
        cfg = cfg.copy()
        if 'type' not in cfg:
            raise RuntimeError('No object information in {}.'.format(cfg))

        component = self._load_component(cfg.pop('type'))

        params = {}
        for key, val in cfg.items():
            if self._is_meta_type(val):
                params[key] = self._load_object(val)
            elif isinstance(val, list):
                params[key] = [
                    self._load_object(item)
                    if self._is_meta_type(item) else item for item in val
                ]
            else:
                params[key] = val

        return component(**params)

    def _is_meta_type(self, item: Any) -> bool:
        return isinstance(item, dict) and 'type' in item