fcn.py 5.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import os

import paddle
C
chenguowei01 已提交
19 20
import paddle.nn as nn
import paddle.nn.functional as F
C
chenguowei01 已提交
21
from paddle.nn import Conv2d
22 23 24 25 26 27
from paddle.nn import SyncBatchNorm as BatchNorm

from paddleseg.cvlibs import manager
from paddleseg import utils
from paddleseg.cvlibs import param_init
from paddleseg.utils import logger
28
from paddleseg.models.common import layer_libs, activation
29 30 31 32 33 34 35 36 37

__all__ = [
    "fcn_hrnet_w18_small_v1", "fcn_hrnet_w18_small_v2", "fcn_hrnet_w18",
    "fcn_hrnet_w30", "fcn_hrnet_w32", "fcn_hrnet_w40", "fcn_hrnet_w44",
    "fcn_hrnet_w48", "fcn_hrnet_w60", "fcn_hrnet_w64"
]


@manager.MODELS.add_component
C
chenguowei01 已提交
38
class FCN(nn.Layer):
C
chenguowei01 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    def __init__(self,
                 num_classes,
                 backbone,
                 pretrained=None,
                 backbone_indices=(-1, ),
                 channels=None):
        super(FCN, self).__init__()

        self.backbone = backbone
        backbone_channels = [
            backbone.feat_channels[i] for i in backbone_indices
        ]

        self.head = FCNHead(num_classes, backbone_indices, backbone_channels,
                            channels)
        utils.load_entire_model(self, pretrained)

    def forward(self, input):
        feat_list = self.backbone(input)
        logit_list = self.head(feat_list)
        return [
            F.resize_bilinear(logit, input.shape[2:]) for logit in logit_list
        ]


class FCNHead(nn.Layer):
65
    """
C
chenguowei01 已提交
66
    A simple implementation for Fully Convolutional Networks for Semantic Segmentation.
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    https://arxiv.org/abs/1411.4038

    Args:
        num_classes (int): the unique number of target classes.
        backbone (paddle.nn.Layer): backbone networks.
        model_pretrained (str): the path of pretrained model.
        backbone_indices (tuple): one values in the tuple indicte the indices of output of backbone.Default -1.
        backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.
        channels (int): channels after conv layer before the last one.
    """

    def __init__(self,
                 num_classes,
                 backbone_indices=(-1, ),
                 backbone_channels=(270, ),
                 channels=None):
C
chenguowei01 已提交
83
        super(FCNHead, self).__init__()
84 85 86 87

        self.num_classes = num_classes
        self.backbone_indices = backbone_indices
        if channels is None:
C
chenguowei01 已提交
88
            channels = backbone_channels[0]
89

C
chenguowei01 已提交
90
        self.conv_1 = layer_libs.ConvBNReLU(
C
chenguowei01 已提交
91 92 93
            in_channels=backbone_channels[0],
            out_channels=channels,
            kernel_size=1,
C
chenguowei01 已提交
94
            padding='same',
95
            stride=1)
C
chenguowei01 已提交
96
        self.cls = Conv2d(
C
chenguowei01 已提交
97 98 99
            in_channels=channels,
            out_channels=self.num_classes,
            kernel_size=1,
100 101
            stride=1,
            padding=0)
C
chenguowei01 已提交
102 103 104 105 106 107 108 109 110
        self.init_weight()

    def forward(self, feat_list):
        logit_list = []
        x = feat_list[self.backbone_indices[0]]
        x = self.conv_1(x)
        logit = self.cls(x)
        logit_list.append(logit)
        return logit_list
111 112

    def init_weight(self):
W
wuyefeilin 已提交
113 114 115 116 117 118
        for layer in self.sublayers():
            if isinstance(layer, nn.Conv2d):
                param_init.normal_init(layer.weight, scale=0.001)
            elif isinstance(layer, (nn.BatchNorm, nn.SyncBatchNorm)):
                param_init.constant_init(layer.weight, value=1.0)
                param_init.constant_init(layer.bias, value=0.0)
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168


@manager.MODELS.add_component
def fcn_hrnet_w18_small_v1(*args, **kwargs):
    return FCN(backbone='HRNet_W18_Small_V1', backbone_channels=(240), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w18_small_v2(*args, **kwargs):
    return FCN(backbone='HRNet_W18_Small_V2', backbone_channels=(270), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w18(*args, **kwargs):
    return FCN(backbone='HRNet_W18', backbone_channels=(270), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w30(*args, **kwargs):
    return FCN(backbone='HRNet_W30', backbone_channels=(450), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w32(*args, **kwargs):
    return FCN(backbone='HRNet_W32', backbone_channels=(480), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w40(*args, **kwargs):
    return FCN(backbone='HRNet_W40', backbone_channels=(600), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w44(*args, **kwargs):
    return FCN(backbone='HRNet_W44', backbone_channels=(660), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w48(*args, **kwargs):
    return FCN(backbone='HRNet_W48', backbone_channels=(720), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w60(*args, **kwargs):
    return FCN(backbone='HRNet_W60', backbone_channels=(900), **kwargs)


@manager.MODELS.add_component
def fcn_hrnet_w64(*args, **kwargs):
    return FCN(backbone='HRNet_W64', backbone_channels=(960), **kwargs)