infer.py 12.1 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""实时人像分割Python预测部署"""

import os
import argparse
import numpy as np
import cv2

import paddle.fluid as fluid


def humanseg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
    """计算光流跟踪匹配点和光流图
    输入参数:
        pre_gray: 上一帧灰度图
        cur_gray: 当前帧灰度图
        prev_cfd: 上一帧光流图
        dl_weights: 融合权重图
        disflow: 光流数据结构
    返回值:
        is_track: 光流点跟踪二值图,即是否具有光流点匹配
        track_cfd: 光流跟踪图
    """
    check_thres = 8
    hgt, wdh = pre_gray.shape[:2]
    track_cfd = np.zeros_like(prev_cfd)
    is_track = np.zeros_like(pre_gray)
    # 计算前向光流
    flow_fw = disflow.calc(pre_gray, cur_gray, None)
    # 计算后向光流
    flow_bw = disflow.calc(cur_gray, pre_gray, None)
    get_round = lambda data: (int)(data + 0.5) if data >= 0 else (int)(data -
                                                                       0.5)
    for row in range(hgt):
        for col in range(wdh):
            # 计算光流处理后对应点坐标
            # (row, col) -> (cur_x, cur_y)
            fxy_fw = flow_fw[row, col]
            dx_fw = get_round(fxy_fw[0])
            cur_x = dx_fw + col
            dy_fw = get_round(fxy_fw[1])
            cur_y = dy_fw + row
            if cur_x < 0 or cur_x >= wdh or cur_y < 0 or cur_y >= hgt:
                continue
            fxy_bw = flow_bw[cur_y, cur_x]
            dx_bw = get_round(fxy_bw[0])
            dy_bw = get_round(fxy_bw[1])
            # 光流移动小于阈值
            lmt = ((dy_fw + dy_bw) * (dy_fw + dy_bw) +
                   (dx_fw + dx_bw) * (dx_fw + dx_bw))
            if lmt >= check_thres:
                continue
            # 静止点降权
            if abs(dy_fw) <= 0 and abs(dx_fw) <= 0 and abs(dy_bw) <= 0 and abs(
                    dx_bw) <= 0:
                dl_weights[cur_y, cur_x] = 0.05
            is_track[cur_y, cur_x] = 1
            track_cfd[cur_y, cur_x] = prev_cfd[row, col]
    return track_cfd, is_track, dl_weights


def humanseg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track):
    """光流追踪图和人像分割结构融合
    输入参数:
        track_cfd: 光流追踪图
        dl_cfd: 当前帧分割结果
        dl_weights: 融合权重图
        is_track: 光流点匹配二值图
    返回值:
        cur_cfd: 光流跟踪图和人像分割结果融合图
    """
    cur_cfd = dl_cfd.copy()
    idxs = np.where(is_track > 0)
    for i in range(len(idxs)):
        x, y = idxs[0][i], idxs[1][i]
        dl_score = dl_cfd[y, x]
        track_score = track_cfd[y, x]
        if dl_score > 0.9 or dl_score < 0.1:
            if dl_weights[x, y] < 0.1:
                cur_cfd[x, y] = 0.3 * dl_score + 0.7 * track_score
            else:
                cur_cfd[x, y] = 0.4 * dl_score + 0.6 * track_score
        else:
            cur_cfd[x, y] = dl_weights[x, y] * dl_score + (
                1 - dl_weights[x, y]) * track_score
    return cur_cfd


def threshold_mask(img, thresh_bg, thresh_fg):
    """设置背景和前景阈值mask
    输入参数:
        img : 原始图像, np.uint8 类型.
        thresh_bg : 背景阈值百分比,低于该值置为0.
        thresh_fg : 前景阈值百分比,超过该值置为1.
    返回值:
        dst : 原始图像设置完前景背景阈值mask结果, np.float32 类型.
    """
    dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg)
    dst[np.where(dst > 1)] = 1
    dst[np.where(dst < 0)] = 0
    return dst.astype(np.float32)


def optflow_handle(cur_gray, scoremap, is_init):
    """光流优化
    Args:
        cur_gray : 当前帧灰度图
        scoremap : 当前帧分割结果
        is_init : 是否第一帧
    Returns:
        dst : 光流追踪图和预测结果融合图, 类型为 np.float32
    """
    width, height = scoremap.shape[0], scoremap.shape[1]
    disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
    prev_gray = np.zeros((height, width), np.uint8)
    prev_cfd = np.zeros((height, width), np.float32)
    cur_cfd = scoremap.copy()
    if is_init:
        is_init = False
        if height <= 64 or width <= 64:
            disflow.setFinestScale(1)
        elif height <= 160 or width <= 160:
            disflow.setFinestScale(2)
        else:
            disflow.setFinestScale(3)
        fusion_cfd = cur_cfd
    else:
        weights = np.ones((width, height), np.float32) * 0.3
        track_cfd, is_track, weights = humanseg_tracking(
            prev_gray, cur_gray, prev_cfd, weights, disflow)
        fusion_cfd = humanseg_track_fuse(track_cfd, cur_cfd, weights, is_track)
    fusion_cfd = cv2.GaussianBlur(fusion_cfd, (3, 3), 0)
    return fusion_cfd


class HumanSeg:
    """人像分割类
    封装了人像分割模型的加载,数据预处理,预测,后处理等
    """

    def __init__(self, model_dir, mean, scale, eval_size, use_gpu=False):

        self.mean = np.array(mean).reshape((3, 1, 1))
        self.scale = np.array(scale).reshape((3, 1, 1))
        self.eval_size = eval_size
        self.load_model(model_dir, use_gpu)

    def load_model(self, model_dir, use_gpu):
        """加载模型并创建predictor
        Args:
            model_dir: 预测模型路径, 包含 `__model__` 和 `__params__`
            use_gpu: 是否使用GPU加速
        """
        prog_file = os.path.join(model_dir, '__model__')
        params_file = os.path.join(model_dir, '__params__')
        config = fluid.core.AnalysisConfig(prog_file, params_file)
        if use_gpu:
            config.enable_use_gpu(100, 0)
            config.switch_ir_optim(True)
        else:
            config.disable_gpu()
        config.disable_glog_info()
        config.switch_specify_input_names(True)
        config.enable_memory_optim()
        self.predictor = fluid.core.create_paddle_predictor(config)

    def preprocess(self, image):
        """图像预处理
        hwc_rgb 转换为 chw_bgr,并进行归一化
        输入参数:
            image: 原始图像
        返回值:
            经过预处理后的图片结果
        """
        img_mat = cv2.resize(
            image, self.eval_size, interpolation=cv2.INTER_LINEAR)
        # HWC -> CHW
        img_mat = img_mat.swapaxes(1, 2)
        img_mat = img_mat.swapaxes(0, 1)
        # Convert to float
        img_mat = img_mat[:, :, :].astype('float32')
        img_mat = (img_mat / 255. - self.mean) / self.scale
        img_mat = img_mat[np.newaxis, :, :, :]
        return img_mat

    def postprocess(self, image, output_data):
        """对预测结果进行后处理
        Args:
             image: 原始图,opencv 图片对象
             output_data: Paddle预测结果原始数据
        Returns:
             原图和预测结果融合并做了光流优化的结果图
        """
        scoremap = output_data[0, 1, :, :]
        scoremap = (scoremap * 255).astype(np.uint8)
        ori_h, ori_w = image.shape[0], image.shape[1]
        evl_h, evl_w = self.eval_size[0], self.eval_size[1]
        # 光流处理
        cur_gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
        cur_gray = cv2.resize(cur_gray, (evl_w, evl_h))
        optflow_map = optflow_handle(cur_gray, scoremap, False)
        optflow_map = cv2.GaussianBlur(optflow_map, (3, 3), 0)
        optflow_map = threshold_mask(optflow_map, thresh_bg=0.2, thresh_fg=0.8)
        optflow_map = cv2.resize(optflow_map, (ori_w, ori_h))
        optflow_map = np.repeat(optflow_map[:, :, np.newaxis], 3, axis=2)
        bg_im = np.ones_like(optflow_map) * 255
        comb = (optflow_map * image + (1 - optflow_map) * bg_im).astype(
            np.uint8)
        return comb

    def run_predict(self, image):
        """运行预测并返回可视化结果图
        输入参数:
            image: 需要预测的原始图, opencv图片对象
        返回值:
            可视化的预测结果图
        """
        im_mat = self.preprocess(image)
        im_tensor = fluid.core.PaddleTensor(im_mat.copy().astype('float32'))
        output_data = self.predictor.run([im_tensor])[1]
        output_data = output_data.as_ndarray()
        return self.postprocess(image, output_data)

    def image_segment(self, path):
        """对图片文件进行分割
            结果保存到`result.jpeg`文件中
            """
        img_mat = cv2.imread(path)
        img_mat = self.run_predict(img_mat)
        cv2.imwrite('result.jpeg', img_mat)

    def video_segment(self, path=None):
        """
        对视屏流进行分割,
        path为None时默认打开摄像头。
        """
        if path is None:
            cap = cv2.VideoCapture(0)
        else:
            cap = cv2.VideoCapture(path)
        if not cap.isOpened():
            raise IOError("Error opening video stream or file")
            return

        if path is not None:
            width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
            height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
            fps = cap.get(cv2.CAP_PROP_FPS)
            # 用于保存预测结果视频
            out = cv2.VideoWriter('result.avi',
                                  cv2.VideoWriter_fourcc('M', 'J', 'P', 'G'),
                                  fps, (width, height))
            # 开始获取视频帧
            while cap.isOpened():
                ret, frame = cap.read()
                if ret:
                    img_mat = self.run_predict(frame)
                    out.write(img_mat)
                else:
                    break
            cap.release()
            out.release()

        else:
            while cap.isOpened():
                ret, frame = cap.read()
                if ret:
                    img_mat = self.run_predict(frame)
                    cv2.imshow('HumanSegmentation', img_mat)
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
                else:
                    break
            cap.release()


def main(args):
    """预测程序入口
    完成模型加载, 对视频、摄像头、图片文件等预测过程
    """
    model_dir = args.model_dir
    use_gpu = args.use_gpu

    # 加载模型
    mean = [0.5, 0.5, 0.5]
    scale = [0.5, 0.5, 0.5]
    eval_size = (192, 192)
    model = HumanSeg(model_dir, mean, scale, eval_size, use_gpu)
    if args.use_camera:
        # 开启摄像头
        model.video_segment()
    elif args.video_path:
        # 使用视频文件作为输入
        model.video_segment(args.video_path)
    elif args.img_path:
        # 使用图片文件作为输入
        model.image_segment(args.img_path)
    else:
        raise ValueError(
            'One of (--model_dir, --video_path, --use_camera) should be given.')


def parse_args():
    """解析命令行参数
    """
    parser = argparse.ArgumentParser('Realtime Human Segmentation')
    parser.add_argument(
        '--model_dir',
        type=str,
        default='',
        help='path of human segmentation model')
    parser.add_argument(
        '--img_path', type=str, default='', help='path of input image')
    parser.add_argument(
        '--video_path', type=str, default='', help='path of input video')
    parser.add_argument(
        '--use_camera',
        type=bool,
        default=False,
        help='input video stream from camera')
    parser.add_argument(
        '--use_gpu', type=bool, default=False, help='enable gpu')
    return parser.parse_args()


if __name__ == "__main__":
    args = parse_args()
    main(args)