dataset.py 4.0 KB
Newer Older
R
root 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

17 18 19
import paddle.fluid as fluid
import numpy as np
from PIL import Image
R
root 已提交
20 21


22
class Dataset(fluid.io.Dataset):
R
root 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    def __init__(self,
                 data_dir,
                 num_classes,
                 train_list=None,
                 val_list=None,
                 test_list=None,
                 separator=' ',
                 transforms=None,
                 mode='train'):
        self.data_dir = data_dir
        self.transforms = transforms
        self.file_list = list()
        self.mode = mode
        self.num_classes = num_classes

        if mode.lower() not in ['train', 'eval', 'test']:
            raise Exception(
                "mode should be 'train', 'eval' or 'test', but got {}.".format(
                    mode))

        if self.transforms is None:
            raise Exception("transform is necessary, but it is None.")

        self.data_dir = data_dir
        if mode == 'train':
            if train_list is None:
                raise Exception(
                    'When mode is "train", train_list is need, but it is None.')
            elif not os.path.exists(train_list):
                raise Exception(
                    'train_list is not found: {}'.format(train_list))
            else:
                file_list = train_list
        elif mode == 'eval':
            if val_list is None:
                raise Exception(
                    'When mode is "eval", val_list is need, but it is None.')
            elif not os.path.exists(val_list):
                raise Exception('val_list is not found: {}'.format(val_list))
            else:
                file_list = val_list
        else:
            if test_list is None:
                raise Exception(
                    'When mode is "test", test_list is need, but it is None.')
            elif not os.path.exists(test_list):
                raise Exception('test_list is not found: {}'.format(test_list))
            else:
                file_list = test_list

        with open(file_list, 'r') as f:
            for line in f:
                items = line.strip().split(separator)
                if len(items) != 2:
                    if mode == 'train' or mode == 'eval':
                        raise Exception(
                            "File list format incorrect! It should be"
                            " image_name{}label_name\\n".format(separator))
                    image_path = os.path.join(self.data_dir, items[0])
                    grt_path = None
                else:
                    image_path = os.path.join(self.data_dir, items[0])
                    grt_path = os.path.join(self.data_dir, items[1])
                self.file_list.append([image_path, grt_path])

    def __getitem__(self, idx):
        image_path, grt_path = self.file_list[idx]
        if self.mode == 'train':
91
            im, im_info, label = self.transforms(im=image_path, label=grt_path)
R
root 已提交
92 93
            return im, label
        elif self.mode == 'eval':
94 95 96 97 98
            im, im_info, _ = self.transforms(im=image_path)
            im = im[np.newaxis, ...]
            label = np.asarray(Image.open(grt_path))
            label = label[np.newaxis, np.newaxis, :, :]
            return im, im_info, label
R
root 已提交
99
        if self.mode == 'test':
100 101
            im, im_info, _ = self.transforms(im=image_path)
            im = im[np.newaxis, ...]
R
root 已提交
102 103 104 105
            return im, im_info, image_path

    def __len__(self):
        return len(self.file_list)