seg_conf_parser.h 7.9 KB
Newer Older
J
joey12300 已提交
1 2 3 4 5 6
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
7
// http://www.apache.org/licenses/LICENSE-2.0
J
joey12300 已提交
8 9 10 11 12 13 14
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
#pragma once
#include <yaml-cpp/yaml.h>
#include <iostream>
#include <vector>
#include <string>

namespace PaddleSolution {
class PaddleSegModelConfigPaser {
 public:
    PaddleSegModelConfigPaser()
        :_class_num(0),
        _channels(0),
        _use_gpu(0),
        _batch_size(1),
        _model_file_name("__model__"),
        _param_file_name("__params__") {
    }
    ~PaddleSegModelConfigPaser() {
    }

    void reset() {
        _resize.clear();
        _mean.clear();
        _std.clear();
        _img_type.clear();
        _class_num = 0;
        _channels = 0;
        _use_gpu = 0;
        _batch_size = 1;
        _model_file_name.clear();
        _model_path.clear();
        _param_file_name.clear();
    }

    std::string process_parenthesis(const std::string& str) {
        if (str.size() < 2) {
            return str;
        }
        std::string nstr(str);
        if (str[0] == '(' && str.back() == ')') {
            nstr[0] = '[';
            nstr[str.size() - 1] = ']';
        }
        return nstr;
    }

    template <typename T>
    std::vector<T> parse_str_to_vec(const std::string& str) {
        std::vector<T> data;
        auto node = YAML::Load(str);
        for (const auto& item : node) {
            data.push_back(item.as<T>());
        }
        return data;
    }

    bool load_config(const std::string& conf_file) {
        reset();
S
sjtubinlong 已提交
73 74 75 76 77 78
        YAML::Node config;
        try {
            config = YAML::LoadFile(conf_file);
        } catch(...) {
            return false;
        }
79
        // 1. get resize
S
sjtubinlong 已提交
80 81 82 83 84 85 86
        if (config["DEPLOY"]["EVAL_CROP_SIZE"].IsDefined()) {
            auto str = config["DEPLOY"]["EVAL_CROP_SIZE"].as<std::string>();
            _resize = parse_str_to_vec<int>(process_parenthesis(str));
        } else {
            std::cerr << "Please set EVAL_CROP_SIZE: (xx, xx)" << std::endl;
            return false;
        }
87 88

        // 2. get mean
S
sjtubinlong 已提交
89 90 91 92 93 94 95
        if (config["DEPLOY"]["MEAN"].IsDefined()) {
            for (const auto& item : config["DEPLOY"]["MEAN"]) {
                _mean.push_back(item.as<float>());
            }
        } else {
            std::cerr << "Please set MEAN: [xx, xx, xx]" << std::endl;
            return false;
96 97 98
        }

        // 3. get std
S
sjtubinlong 已提交
99 100 101 102 103 104 105
        if(config["DEPLOY"]["STD"].IsDefined()) {
            for (const auto& item : config["DEPLOY"]["STD"]) {
                _std.push_back(item.as<float>());
            }
        } else {
            std::cerr << "Please set STD: [xx, xx, xx]" << std::endl;
            return false;
106 107 108
        }

        // 4. get image type
S
sjtubinlong 已提交
109 110 111 112 113 114
		if (config["DEPLOY"]["IMAGE_TYPE"].IsDefined()) {
            _img_type = config["DEPLOY"]["IMAGE_TYPE"].as<std::string>();
        } else {
            std::cerr << "Please set IMAGE_TYPE: \"rgb\" or \"rgba\"" << std::endl;
            return false;
        }
115
        // 5. get class number
S
sjtubinlong 已提交
116 117 118 119 120 121
        if (config["DEPLOY"]["NUM_CLASSES"].IsDefined()) {
            _class_num = config["DEPLOY"]["NUM_CLASSES"].as<int>();
        } else {
            std::cerr << "Please set NUM_CLASSES: x" << std::endl;
            return false;
        }
122
        // 7. set model path
S
sjtubinlong 已提交
123 124 125 126 127 128
        if (config["DEPLOY"]["MODEL_PATH"].IsDefined()) {
            _model_path = config["DEPLOY"]["MODEL_PATH"].as<std::string>();
        } else {
            std::cerr << "Please set MODEL_PATH: \"/path/to/model_dir\"" << std::endl;
            return false;
        }
129
        // 8. get model file_name
S
sjtubinlong 已提交
130 131 132 133 134
        if (config["DEPLOY"]["MODEL_FILENAME"].IsDefined()) {
            _model_file_name = config["DEPLOY"]["MODEL_FILENAME"].as<std::string>();
        } else {
            _model_file_name = "__model__";
        }
135
        // 9. get model param file name
S
sjtubinlong 已提交
136 137 138 139 140 141
        if (config["DEPLOY"]["PARAMS_FILENAME"].IsDefined()) {
            _param_file_name
                = config["DEPLOY"]["PARAMS_FILENAME"].as<std::string>();
        } else {
            _param_file_name = "__params__";
        }
142
        // 10. get pre_processor
S
sjtubinlong 已提交
143 144 145 146 147 148
        if (config["DEPLOY"]["PRE_PROCESSOR"].IsDefined()) {
            _pre_processor = config["DEPLOY"]["PRE_PROCESSOR"].as<std::string>();
        } else {
            std::cerr << "Please set PRE_PROCESSOR: \"DetectionPreProcessor\"" << std::endl;
            return false;
        }
149
        // 11. use_gpu
S
sjtubinlong 已提交
150 151 152 153 154
        if (config["DEPLOY"]["USE_GPU"].IsDefined()) { 
            _use_gpu = config["DEPLOY"]["USE_GPU"].as<int>();
        } else {
            _use_gpu = 0;
        }
155
        // 12. predictor_mode
S
sjtubinlong 已提交
156 157 158 159 160 161
        if (config["DEPLOY"]["PREDICTOR_MODE"].IsDefined()) {
            _predictor_mode = config["DEPLOY"]["PREDICTOR_MODE"].as<std::string>();
        } else {
            std::cerr << "Please set PREDICTOR_MODE: \"NATIVE\" or \"ANALYSIS\""  << std::endl;
            return false;
        }
162
        // 13. batch_size
S
sjtubinlong 已提交
163 164 165 166 167
        if (config["DEPLOY"]["BATCH_SIZE"].IsDefined()) {
            _batch_size = config["DEPLOY"]["BATCH_SIZE"].as<int>();
        } else {
            _batch_size = 1;
        }
168
        // 14. channels
S
sjtubinlong 已提交
169 170 171 172 173 174
        if (config["DEPLOY"]["CHANNELS"].IsDefined()) {
            _channels = config["DEPLOY"]["CHANNELS"].as<int>();
        } else {
            std::cerr << "Please set CHANNELS: x"  << std::endl;
            return false;
        }
175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        return true;
    }

    void debug() const {
        std::cout << "EVAL_CROP_SIZE: ("
                  << _resize[0] << ", " << _resize[1]
                  << ")" << std::endl;
        std::cout << "MEAN: [";
        for (int i = 0; i < _mean.size(); ++i) {
            if (i != _mean.size() - 1) {
                std::cout << _mean[i] << ", ";
            } else {
                std::cout << _mean[i];
            }
        }
        std::cout << "]" << std::endl;

        std::cout << "STD: [";
        for (int i = 0; i < _std.size(); ++i) {
            if (i != _std.size() - 1) {
                std::cout << _std[i] << ", ";
            } else {
                std::cout << _std[i];
            }
        }
        std::cout << "]" << std::endl;

        std::cout << "DEPLOY.IMAGE_TYPE: " << _img_type << std::endl;
        std::cout << "DEPLOY.NUM_CLASSES: " << _class_num << std::endl;
        std::cout << "DEPLOY.CHANNELS: " << _channels << std::endl;
        std::cout << "DEPLOY.MODEL_PATH: " << _model_path << std::endl;
        std::cout << "DEPLOY.MODEL_FILENAME: " << _model_file_name << std::endl;
        std::cout << "DEPLOY.PARAMS_FILENAME: "
                  << _param_file_name << std::endl;
        std::cout << "DEPLOY.PRE_PROCESSOR: " << _pre_processor << std::endl;
        std::cout << "DEPLOY.USE_GPU: " << _use_gpu << std::endl;
        std::cout << "DEPLOY.PREDICTOR_MODE: " << _predictor_mode << std::endl;
        std::cout << "DEPLOY.BATCH_SIZE: " << _batch_size << std::endl;
    }

    // DEPLOY.EVAL_CROP_SIZE
    std::vector<int> _resize;
    // DEPLOY.MEAN
    std::vector<float> _mean;
    // DEPLOY.STD
    std::vector<float> _std;
    // DEPLOY.IMAGE_TYPE
    std::string _img_type;
    // DEPLOY.NUM_CLASSES
    int _class_num;
    // DEPLOY.CHANNELS
    int _channels;
    // DEPLOY.MODEL_PATH
    std::string _model_path;
    // DEPLOY.MODEL_FILENAME
    std::string _model_file_name;
    // DEPLOY.PARAMS_FILENAME
    std::string _param_file_name;
    // DEPLOY.PRE_PROCESSOR
    std::string _pre_processor;
    // DEPLOY.USE_GPU
    int _use_gpu;
    // DEPLOY.PREDICTOR_MODE
    std::string _predictor_mode;
    // DEPLOY.BATCH_SIZE
    int _batch_size;
};

}  // namespace PaddleSolution