progbar.py 7.9 KB
Newer Older
M
michaelowenliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import time

import numpy as np

M
michaelowenliu 已提交
20

M
michaelowenliu 已提交
21
class Progbar(object):
M
michaelowenliu 已提交
22
    """Displays a progress bar.
M
michaelowenliu 已提交
23 24 25 26 27 28 29 30 31 32 33 34
     refers to https://github.com/keras-team/keras/blob/keras-2/keras/utils/generic_utils.py
  Arguments:
      target: Total number of steps expected, None if unknown.
      width: Progress bar width on screen.
      verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
      stateful_metrics: Iterable of string names of metrics that should *not* be
        averaged over time. Metrics in this list will be displayed as-is. All
        others will be averaged by the progbar before display.
      interval: Minimum visual progress update interval (in seconds).
      unit_name: Display name for step counts (usually "step" or "sample").
  """

M
michaelowenliu 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
    def __init__(self,
                 target,
                 width=30,
                 verbose=1,
                 interval=0.05,
                 stateful_metrics=None,
                 unit_name='step'):
        self.target = target
        self.width = width
        self.verbose = verbose
        self.interval = interval
        self.unit_name = unit_name
        if stateful_metrics:
            self.stateful_metrics = set(stateful_metrics)
        else:
            self.stateful_metrics = set()

        self._dynamic_display = ((hasattr(sys.stdout, 'isatty')
                                  and sys.stdout.isatty())
                                 or 'ipykernel' in sys.modules
                                 or 'posix' in sys.modules
                                 or 'PYCHARM_HOSTED' in os.environ)
        self._total_width = 0
        self._seen_so_far = 0
        # We use a dict + list to avoid garbage collection
        # issues found in OrderedDict
        self._values = {}
        self._values_order = []
        self._start = time.time()
        self._last_update = 0

    def update(self, current, values=None, finalize=None):
        """Updates the progress bar.
M
michaelowenliu 已提交
68 69 70 71 72 73 74 75
    Arguments:
        current: Index of current step.
        values: List of tuples: `(name, value_for_last_step)`. If `name` is in
          `stateful_metrics`, `value_for_last_step` will be displayed as-is.
          Else, an average of the metric over time will be displayed.
        finalize: Whether this is the last update for the progress bar. If
          `None`, defaults to `current >= self.target`.
    """
M
michaelowenliu 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
        if finalize is None:
            if self.target is None:
                finalize = False
            else:
                finalize = current >= self.target

        values = values or []
        for k, v in values:
            if k not in self._values_order:
                self._values_order.append(k)
            if k not in self.stateful_metrics:
                # In the case that progress bar doesn't have a target value in the first
                # epoch, both on_batch_end and on_epoch_end will be called, which will
                # cause 'current' and 'self._seen_so_far' to have the same value. Force
                # the minimal value to 1 here, otherwise stateful_metric will be 0s.
                value_base = max(current - self._seen_so_far, 1)
                if k not in self._values:
                    self._values[k] = [v * value_base, value_base]
                else:
                    self._values[k][0] += v * value_base
                    self._values[k][1] += value_base
            else:
                # Stateful metrics output a numeric value. This representation
                # means "take an average from a single value" but keeps the
                # numeric formatting.
                self._values[k] = [v, 1]
        self._seen_so_far = current

        now = time.time()
        info = ' - %.0fs' % (now - self._start)
        if self.verbose == 1:
            if now - self._last_update < self.interval and not finalize:
                return

            prev_total_width = self._total_width
            if self._dynamic_display:
                sys.stdout.write('\b' * prev_total_width)
                sys.stdout.write('\r')
            else:
                sys.stdout.write('\n')

            if self.target is not None:
                numdigits = int(np.log10(self.target)) + 1
                bar = ('%' + str(numdigits) + 'd/%d [') % (current, self.target)
                prog = float(current) / self.target
                prog_width = int(self.width * prog)
                if prog_width > 0:
                    bar += ('=' * (prog_width - 1))
                    if current < self.target:
                        bar += '>'
                    else:
                        bar += '='
                bar += ('.' * (self.width - prog_width))
                bar += ']'
            else:
                bar = '%7d/Unknown' % current

            self._total_width = len(bar)
            sys.stdout.write(bar)

            if current:
                time_per_unit = (now - self._start) / current
            else:
                time_per_unit = 0

            if self.target is None or finalize:
                if time_per_unit >= 1 or time_per_unit == 0:
                    info += ' %.0fs/%s' % (time_per_unit, self.unit_name)
                elif time_per_unit >= 1e-3:
                    info += ' %.0fms/%s' % (time_per_unit * 1e3, self.unit_name)
                else:
                    info += ' %.0fus/%s' % (time_per_unit * 1e6, self.unit_name)
            else:
                eta = time_per_unit * (self.target - current)
                if eta > 3600:
                    eta_format = '%d:%02d:%02d' % (eta // 3600,
                                                   (eta % 3600) // 60, eta % 60)
                elif eta > 60:
                    eta_format = '%d:%02d' % (eta // 60, eta % 60)
                else:
                    eta_format = '%ds' % eta

                info = ' - ETA: %s' % eta_format

            for k in self._values_order:
                info += ' - %s:' % k
                if isinstance(self._values[k], list):
                    avg = np.mean(
                        self._values[k][0] / max(1, self._values[k][1]))
                    if abs(avg) > 1e-3:
                        info += ' %.4f' % avg
                    else:
                        info += ' %.4e' % avg
                else:
                    info += ' %s' % self._values[k]

            self._total_width += len(info)
            if prev_total_width > self._total_width:
                info += (' ' * (prev_total_width - self._total_width))

            if finalize:
                info += '\n'

            sys.stdout.write(info)
            sys.stdout.flush()

        elif self.verbose == 2:
            if finalize:
                numdigits = int(np.log10(self.target)) + 1
                count = ('%' + str(numdigits) + 'd/%d') % (current, self.target)
                info = count + info
                for k in self._values_order:
                    info += ' - %s:' % k
                    avg = np.mean(
                        self._values[k][0] / max(1, self._values[k][1]))
                    if avg > 1e-3:
                        info += ' %.4f' % avg
                    else:
                        info += ' %.4e' % avg
                info += '\n'

                sys.stdout.write(info)
                sys.stdout.flush()

        self._last_update = now

    def add(self, n, values=None):
        self.update(self._seen_so_far + n, values)