loss.py 4.9 KB
Newer Older
W
wuyefeilin 已提交
1 2
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LutaoChu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import numpy as np


def softmax_with_loss(logit,
                      label,
                      ignore_mask=None,
                      num_classes=2,
                      weight=None,
                      ignore_index=255):
    ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
    label = fluid.layers.elementwise_min(
        label, fluid.layers.assign(np.array([num_classes - 1], dtype=np.int32)))
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.reshape(logit, [-1, num_classes])
    label = fluid.layers.reshape(label, [-1, 1])
    label = fluid.layers.cast(label, 'int64')
    ignore_mask = fluid.layers.reshape(ignore_mask, [-1, 1])
    if weight is None:
        loss, probs = fluid.layers.softmax_with_cross_entropy(
            logit, label, ignore_index=ignore_index, return_softmax=True)
    else:
C
chenguowei01 已提交
38
        label = fluid.layers.squeeze(label, axes=[-1])
39
        label_one_hot = fluid.one_hot(input=label, depth=num_classes)
L
LutaoChu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        if isinstance(weight, list):
            assert len(
                weight
            ) == num_classes, "weight length must equal num of classes"
            weight = fluid.layers.assign(np.array([weight], dtype='float32'))
        elif isinstance(weight, str):
            assert weight.lower(
            ) == 'dynamic', 'if weight is string, must be dynamic!'
            tmp = []
            total_num = fluid.layers.cast(
                fluid.layers.shape(label)[0], 'float32')
            for i in range(num_classes):
                cls_pixel_num = fluid.layers.reduce_sum(label_one_hot[:, i])
                ratio = total_num / (cls_pixel_num + 1)
                tmp.append(ratio)
            weight = fluid.layers.concat(tmp)
            weight = weight / fluid.layers.reduce_sum(weight) * num_classes
        elif isinstance(weight, fluid.layers.Variable):
            pass
        else:
            raise ValueError(
                'Expect weight is a list, string or Variable, but receive {}'.
                format(type(weight)))
        weight = fluid.layers.reshape(weight, [1, num_classes])
        weighted_label_one_hot = fluid.layers.elementwise_mul(
            label_one_hot, weight)
        probs = fluid.layers.softmax(logit)
        loss = fluid.layers.cross_entropy(
            probs,
            weighted_label_one_hot,
            soft_label=True,
            ignore_index=ignore_index)
        weighted_label_one_hot.stop_gradient = True

    loss = loss * ignore_mask
    avg_loss = fluid.layers.mean(loss) / (
        fluid.layers.mean(ignore_mask) + 0.00001)

    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return avg_loss


# to change, how to appicate ignore index and ignore mask
def dice_loss(logit, label, ignore_mask=None, epsilon=0.00001):
    if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
        raise Exception(
            "dice loss is only applicable to one channel classfication")
    ignore_mask = fluid.layers.cast(ignore_mask, 'float32')
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    label = fluid.layers.transpose(label, [0, 2, 3, 1])
    label = fluid.layers.cast(label, 'int64')
    ignore_mask = fluid.layers.transpose(ignore_mask, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit = logit * ignore_mask
    label = label * ignore_mask
    reduce_dim = list(range(1, len(logit.shape)))
    inse = fluid.layers.reduce_sum(logit * label, dim=reduce_dim)
    dice_denominator = fluid.layers.reduce_sum(
        logit, dim=reduce_dim) + fluid.layers.reduce_sum(
            label, dim=reduce_dim)
    dice_score = 1 - inse * 2 / (dice_denominator + epsilon)
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return fluid.layers.reduce_mean(dice_score)


def bce_loss(logit, label, ignore_mask=None, ignore_index=255):
    if logit.shape[1] != 1 or label.shape[1] != 1 or ignore_mask.shape[1] != 1:
        raise Exception("bce loss is only applicable to binary classfication")
    label = fluid.layers.cast(label, 'float32')
    loss = fluid.layers.sigmoid_cross_entropy_with_logits(
        x=logit, label=label, ignore_index=ignore_index,
        normalize=True)  # or False
    loss = fluid.layers.reduce_sum(loss)
    label.stop_gradient = True
    ignore_mask.stop_gradient = True
    return loss