resnet_vd.py 15.6 KB
Newer Older
C
chenguowei01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr

__all__ = [
    "ResNet", "ResNet18", "ResNet34", "ResNet50", "ResNet101", "ResNet152"
]

train_parameters = {
    "input_size": [3, 224, 224],
    "input_mean": [0.485, 0.456, 0.406],
    "input_std": [0.229, 0.224, 0.225],
    "learning_strategy": {
        "name": "piecewise_decay",
        "batch_size": 256,
        "epochs": [30, 60, 90],
        "steps": [0.1, 0.01, 0.001, 0.0001]
    }
}


class ResNet():
C
chenguowei01 已提交
43 44 45 46 47
    def __init__(self,
                 layers=50,
                 scale=1.0,
                 stem=None,
                 lr_mult_list=[1.0, 1.0, 1.0, 1.0, 1.0]):
C
chenguowei01 已提交
48 49 50 51
        self.params = train_parameters
        self.layers = layers
        self.scale = scale
        self.stem = stem
C
chenguowei01 已提交
52 53 54 55 56 57
        self.lr_mult_list = lr_mult_list
        assert len(
            self.lr_mult_list
        ) == 5, "lr_mult_list length in ResNet must be 5 but got {}!!".format(
            len(self.lr_mult_list))
        self.curr_stage = 0
C
chenguowei01 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    def net(self,
            input,
            class_dim=1000,
            end_points=None,
            decode_points=None,
            resize_points=None,
            dilation_dict=None):
        layers = self.layers
        supported_layers = [18, 34, 50, 101, 152]
        assert layers in supported_layers, \
            "supported layers are {} but input layer is {}".format(supported_layers, layers)

        decode_ends = dict()

        def check_points(count, points):
            if points is None:
                return False
            else:
                if isinstance(points, list):
                    return (True if count in points else False)
                else:
                    return (True if count == points else False)

        def get_dilated_rate(dilation_dict, idx):
            if dilation_dict is None or idx not in dilation_dict:
                return 1
            else:
                return dilation_dict[idx]

        if layers == 18:
            depth = [2, 2, 2, 2]
        elif layers == 34 or layers == 50:
            depth = [3, 4, 6, 3]
        elif layers == 101:
            depth = [3, 4, 23, 3]
        elif layers == 152:
            depth = [3, 8, 36, 3]
        num_filters = [64, 128, 256, 512]

        if self.stem == 'icnet' or self.stem == 'pspnet' or self.stem == 'deeplab':
C
chenguowei01 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
            conv = self.conv_bn_layer(input=input,
                                      num_filters=int(32 * self.scale),
                                      filter_size=3,
                                      stride=2,
                                      act='relu',
                                      name="conv1_1")
            conv = self.conv_bn_layer(input=conv,
                                      num_filters=int(32 * self.scale),
                                      filter_size=3,
                                      stride=1,
                                      act='relu',
                                      name="conv1_2")
            conv = self.conv_bn_layer(input=conv,
                                      num_filters=int(64 * self.scale),
                                      filter_size=3,
                                      stride=1,
                                      act='relu',
                                      name="conv1_3")
C
chenguowei01 已提交
117
        else:
C
chenguowei01 已提交
118 119 120 121 122 123 124 125 126 127 128 129
            conv = self.conv_bn_layer(input=input,
                                      num_filters=int(64 * self.scale),
                                      filter_size=7,
                                      stride=2,
                                      act='relu',
                                      name="conv1")

        conv = fluid.layers.pool2d(input=conv,
                                   pool_size=3,
                                   pool_stride=2,
                                   pool_padding=1,
                                   pool_type='max')
C
chenguowei01 已提交
130 131 132 133 134 135 136 137 138 139

        layer_count = 1
        if check_points(layer_count, decode_points):
            decode_ends[layer_count] = conv

        if check_points(layer_count, end_points):
            return conv, decode_ends

        if layers >= 50:
            for block in range(len(depth)):
C
chenguowei01 已提交
140
                self.curr_stage += 1
C
chenguowei01 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
                for i in range(depth[block]):
                    if layers in [101, 152] and block == 2:
                        if i == 0:
                            conv_name = "res" + str(block + 2) + "a"
                        else:
                            conv_name = "res" + str(block + 2) + "b" + str(i)
                    else:
                        conv_name = "res" + str(block + 2) + chr(97 + i)
                    dilation_rate = get_dilated_rate(dilation_dict, block)

                    conv = self.bottleneck_block(
                        input=conv,
                        num_filters=int(num_filters[block] * self.scale),
                        stride=2
                        if i == 0 and block != 0 and dilation_rate == 1 else 1,
                        name=conv_name,
                        is_first=block == i == 0,
                        dilation=dilation_rate)
                    layer_count += 3

                    if check_points(layer_count, decode_points):
                        decode_ends[layer_count] = conv

                    if check_points(layer_count, end_points):
                        return conv, decode_ends

                    if check_points(layer_count, resize_points):
                        conv = self.interp(
                            conv,
                            np.ceil(
                                np.array(conv.shape[2:]).astype('int32') / 2))

C
chenguowei01 已提交
173 174 175 176
            pool = fluid.layers.pool2d(input=conv,
                                       pool_size=7,
                                       pool_type='avg',
                                       global_pooling=True)
C
chenguowei01 已提交
177 178 179 180 181 182 183 184
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
        else:
            for block in range(len(depth)):
C
chenguowei01 已提交
185
                self.curr_stage += 1
C
chenguowei01 已提交
186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
                for i in range(depth[block]):
                    conv_name = "res" + str(block + 2) + chr(97 + i)
                    conv = self.basic_block(
                        input=conv,
                        num_filters=num_filters[block],
                        stride=2 if i == 0 and block != 0 else 1,
                        is_first=block == i == 0,
                        name=conv_name)
                    layer_count += 2
                    if check_points(layer_count, decode_points):
                        decode_ends[layer_count] = conv

                    if check_points(layer_count, end_points):
                        return conv, decode_ends

C
chenguowei01 已提交
201 202 203 204
            pool = fluid.layers.pool2d(input=conv,
                                       pool_size=7,
                                       pool_type='avg',
                                       global_pooling=True)
C
chenguowei01 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
            stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
            out = fluid.layers.fc(
                input=pool,
                size=class_dim,
                param_attr=fluid.param_attr.ParamAttr(
                    initializer=fluid.initializer.Uniform(-stdv, stdv)))
        return out

    def zero_padding(self, input, padding):
        return fluid.layers.pad(
            input, [0, 0, 0, 0, padding, padding, padding, padding])

    def interp(self, input, out_shape):
        out_shape = list(out_shape.astype("int32"))
        return fluid.layers.resize_bilinear(input, out_shape=out_shape)

    def conv_bn_layer(self,
                      input,
                      num_filters,
                      filter_size,
                      stride=1,
                      dilation=1,
                      groups=1,
                      act=None,
                      name=None):

C
chenguowei01 已提交
231
        lr_mult = self.lr_mult_list[self.curr_stage]
C
chenguowei01 已提交
232 233 234 235 236
        if self.stem == 'pspnet':
            bias_attr = ParamAttr(name=name + "_biases")
        else:
            bias_attr = False

C
chenguowei01 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249
        conv = fluid.layers.conv2d(input=input,
                                   num_filters=num_filters,
                                   filter_size=filter_size,
                                   stride=stride,
                                   padding=(filter_size - 1) //
                                   2 if dilation == 1 else 0,
                                   dilation=dilation,
                                   groups=groups,
                                   act=None,
                                   param_attr=ParamAttr(name=name + "_weights",
                                                        learning_rate=lr_mult),
                                   bias_attr=bias_attr,
                                   name=name + '.conv2d.output.1')
C
chenguowei01 已提交
250 251 252 253 254 255 256 257 258

        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
            name=bn_name + '.output.1',
C
chenguowei01 已提交
259 260 261
            param_attr=ParamAttr(name=bn_name + '_scale',
                                 learning_rate=lr_mult),
            bias_attr=ParamAttr(bn_name + '_offset', learning_rate=lr_mult),
C
chenguowei01 已提交
262 263 264 265 266 267 268 269 270 271 272 273
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance',
        )

    def conv_bn_layer_new(self,
                          input,
                          num_filters,
                          filter_size,
                          stride=1,
                          groups=1,
                          act=None,
                          name=None):
C
chenguowei01 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        lr_mult = self.lr_mult_list[self.curr_stage]
        pool = fluid.layers.pool2d(input=input,
                                   pool_size=2,
                                   pool_stride=2,
                                   pool_padding=0,
                                   pool_type='avg',
                                   ceil_mode=True)

        conv = fluid.layers.conv2d(input=pool,
                                   num_filters=num_filters,
                                   filter_size=filter_size,
                                   stride=1,
                                   padding=(filter_size - 1) // 2,
                                   groups=groups,
                                   act=None,
                                   param_attr=ParamAttr(name=name + "_weights",
                                                        learning_rate=lr_mult),
                                   bias_attr=False)
C
chenguowei01 已提交
292 293 294 295 296 297 298
        if name == "conv1":
            bn_name = "bn_" + name
        else:
            bn_name = "bn" + name[3:]
        return fluid.layers.batch_norm(
            input=conv,
            act=act,
C
chenguowei01 已提交
299 300 301
            param_attr=ParamAttr(name=bn_name + '_scale',
                                 learning_rate=lr_mult),
            bias_attr=ParamAttr(bn_name + '_offset', learning_rate=lr_mult),
C
chenguowei01 已提交
302 303 304 305 306 307 308 309 310 311
            moving_mean_name=bn_name + '_mean',
            moving_variance_name=bn_name + '_variance')

    def shortcut(self, input, ch_out, stride, is_first, name):
        ch_in = input.shape[1]
        print('shortcut:', stride, is_first, ch_in, ch_out)
        if ch_in != ch_out or stride != 1:
            if is_first or stride == 1:
                return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
            else:
C
chenguowei01 已提交
312 313 314 315 316
                return self.conv_bn_layer_new(input,
                                              ch_out,
                                              1,
                                              stride,
                                              name=name)
C
chenguowei01 已提交
317 318 319 320 321 322 323 324 325 326 327 328
        elif is_first:
            return self.conv_bn_layer(input, ch_out, 1, stride, name=name)
        else:
            return input

    def bottleneck_block(self,
                         input,
                         num_filters,
                         stride,
                         name,
                         is_first=False,
                         dilation=1):
C
chenguowei01 已提交
329 330 331 332 333 334 335
        conv0 = self.conv_bn_layer(input=input,
                                   num_filters=num_filters,
                                   filter_size=1,
                                   dilation=1,
                                   stride=1,
                                   act='relu',
                                   name=name + "_branch2a")
C
chenguowei01 已提交
336 337
        if dilation > 1:
            conv0 = self.zero_padding(conv0, dilation)
C
chenguowei01 已提交
338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        conv1 = self.conv_bn_layer(input=conv0,
                                   num_filters=num_filters,
                                   filter_size=3,
                                   dilation=dilation,
                                   stride=stride,
                                   act='relu',
                                   name=name + "_branch2b")
        conv2 = self.conv_bn_layer(input=conv1,
                                   num_filters=num_filters * 4,
                                   dilation=1,
                                   filter_size=1,
                                   act=None,
                                   name=name + "_branch2c")

        short = self.shortcut(input,
                              num_filters * 4,
                              stride,
                              is_first=is_first,
                              name=name + "_branch1")
C
chenguowei01 已提交
357 358 359
        print(input.shape, short.shape, conv2.shape)
        print(stride)

C
chenguowei01 已提交
360 361 362 363
        return fluid.layers.elementwise_add(x=short,
                                            y=conv2,
                                            act='relu',
                                            name=name + ".add.output.5")
C
chenguowei01 已提交
364 365

    def basic_block(self, input, num_filters, stride, is_first, name):
C
chenguowei01 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
        conv0 = self.conv_bn_layer(input=input,
                                   num_filters=num_filters,
                                   filter_size=3,
                                   act='relu',
                                   stride=stride,
                                   name=name + "_branch2a")
        conv1 = self.conv_bn_layer(input=conv0,
                                   num_filters=num_filters,
                                   filter_size=3,
                                   act=None,
                                   name=name + "_branch2b")
        short = self.shortcut(input,
                              num_filters,
                              stride,
                              is_first,
                              name=name + "_branch1")
C
chenguowei01 已提交
382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        return fluid.layers.elementwise_add(x=short, y=conv1, act='relu')


def ResNet18():
    model = ResNet(layers=18)
    return model


def ResNet34():
    model = ResNet(layers=34)
    return model


def ResNet50():
    model = ResNet(layers=50)
    return model


def ResNet101():
    model = ResNet(layers=101)
    return model


def ResNet152():
    model = ResNet(layers=152)
    return model