humanseg.py 36.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
import paddle.fluid as fluid
import os
from os import path as osp
import numpy as np
from collections import OrderedDict
import copy
import math
import time
import tqdm
import cv2
import yaml
W
wuyefeilin 已提交
27
import paddleslim as slim
28

29 30 31 32 33 34 35
import utils
import utils.logging as logging
from utils import seconds_to_hms
from utils import ConfusionMatrix
from utils import get_environ_info
from nets import DeepLabv3p, ShuffleSeg, HRNet
import transforms as T
36 37 38 39 40 41 42 43 44 45 46 47 48


def dict2str(dict_input):
    out = ''
    for k, v in dict_input.items():
        try:
            v = round(float(v), 6)
        except:
            pass
        out = out + '{}={}, '.format(k, v)
    return out.strip(', ')


W
wuyefeilin 已提交
49
class SegModel(object):
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
    # DeepLab mobilenet
    def __init__(self,
                 num_classes=2,
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
                 ignore_index=255,
                 sync_bn=True):
        self.init_params = locals()
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise ValueError(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))

        self.num_classes = num_classes
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index
        self.sync_bn = sync_bn

        self.labels = None
87 88
        self.env_info = get_environ_info()
        if self.env_info['place'] == 'cpu':
89 90 91 92 93 94 95 96 97 98 99 100
            self.places = fluid.cpu_places()
        else:
            self.places = fluid.cuda_places()
        self.exe = fluid.Executor(self.places[0])
        self.train_prog = None
        self.test_prog = None
        self.parallel_train_prog = None
        self.train_inputs = None
        self.test_inputs = None
        self.train_outputs = None
        self.test_outputs = None
        self.train_data_loader = None
W
wuyefeilin 已提交
101 102 103
        self.eval_metrics = None
        # 当前模型状态
        self.status = 'Normal'
104 105 106 107 108 109 110

    def _get_single_car_bs(self, batch_size):
        if batch_size % len(self.places) == 0:
            return int(batch_size // len(self.places))
        else:
            raise Exception("Please support correct batch_size, \
                            which can be divided by available cards({}) in {}".
111 112
                            format(self.env_info['num'],
                                   self.env_info['place']))
113 114 115

    def build_net(self, mode='train'):
        """应根据不同的情况进行构建"""
W
wuyefeilin 已提交
116
        pass
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132

    def build_program(self):
        # build training network
        self.train_inputs, self.train_outputs = self.build_net(mode='train')
        self.train_prog = fluid.default_main_program()
        startup_prog = fluid.default_startup_program()

        # build prediction network
        self.test_prog = fluid.Program()
        with fluid.program_guard(self.test_prog, startup_prog):
            with fluid.unique_name.guard():
                self.test_inputs, self.test_outputs = self.build_net(
                    mode='test')
        self.test_prog = self.test_prog.clone(for_test=True)

    def arrange_transform(self, transforms, mode='train'):
133
        arrange_transform = T.ArrangeSegmenter
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
        if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
            transforms.transforms[-1] = arrange_transform(mode=mode)
        else:
            transforms.transforms.append(arrange_transform(mode=mode))

    def build_train_data_loader(self, dataset, batch_size):
        # init data_loader
        if self.train_data_loader is None:
            self.train_data_loader = fluid.io.DataLoader.from_generator(
                feed_list=list(self.train_inputs.values()),
                capacity=64,
                use_double_buffer=True,
                iterable=True)
        batch_size_each_gpu = self._get_single_car_bs(batch_size)
        self.train_data_loader.set_sample_list_generator(
            dataset.generator(batch_size=batch_size_each_gpu),
            places=self.places)

    def net_initialize(self,
                       startup_prog=None,
154
                       pretrained_weights=None,
155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
                       resume_weights=None):
        if startup_prog is None:
            startup_prog = fluid.default_startup_program()
        self.exe.run(startup_prog)
        if resume_weights is not None:
            logging.info("Resume weights from {}".format(resume_weights))
            if not osp.exists(resume_weights):
                raise Exception("Path {} not exists.".format(resume_weights))
            fluid.load(self.train_prog, osp.join(resume_weights, 'model'),
                       self.exe)
            # Check is path ended by path spearator
            if resume_weights[-1] == os.sep:
                resume_weights = resume_weights[0:-1]
            epoch_name = osp.basename(resume_weights)
            # If resume weights is end of digit, restore epoch status
            epoch = epoch_name.split('_')[-1]
            if epoch.isdigit():
                self.begin_epoch = int(epoch)
            else:
                raise ValueError("Resume model path is not valid!")
            logging.info("Model checkpoint loaded successfully!")

177
        elif pretrained_weights is not None:
178
            logging.info(
179 180 181
                "Load pretrain weights from {}.".format(pretrained_weights))
            utils.load_pretrained_weights(self.exe, self.train_prog,
                                          pretrained_weights)
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230

    def get_model_info(self):
        # 存储相应的信息到yml文件
        info = dict()
        info['Model'] = self.__class__.__name__
        if 'self' in self.init_params:
            del self.init_params['self']
        if '__class__' in self.init_params:
            del self.init_params['__class__']
        info['_init_params'] = self.init_params

        info['_Attributes'] = dict()
        info['_Attributes']['num_classes'] = self.num_classes
        info['_Attributes']['labels'] = self.labels
        try:
            info['_Attributes']['eval_metric'] = dict()
            for k, v in self.eval_metrics.items():
                if isinstance(v, np.ndarray):
                    if v.size > 1:
                        v = [float(i) for i in v]
                else:
                    v = float(v)
                info['_Attributes']['eval_metric'][k] = v
        except:
            pass

        if hasattr(self, 'test_transforms'):
            if self.test_transforms is not None:
                info['test_transforms'] = list()
                for op in self.test_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
                    info['test_transforms'].append({name: attr})

        if hasattr(self, 'train_transforms'):
            if self.train_transforms is not None:
                info['train_transforms'] = list()
                for op in self.train_transforms.transforms:
                    name = op.__class__.__name__
                    attr = op.__dict__
                    info['train_transforms'].append({name: attr})

        if hasattr(self, 'train_init'):
            if 'self' in self.train_init:
                del self.train_init['self']
            if 'train_dataset' in self.train_init:
                del self.train_init['train_dataset']
            if 'eval_dataset' in self.train_init:
                del self.train_init['eval_dataset']
231 232
            if 'optimizer' in self.train_init:
                del self.train_init['optimizer']
233 234 235 236 237 238 239 240 241
            info['train_init'] = self.train_init
        return info

    def save_model(self, save_dir):
        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)
        model_info = self.get_model_info()
W
wuyefeilin 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268

        if self.status == 'Normal':
            fluid.save(self.train_prog, osp.join(save_dir, 'model'))
        elif self.status == 'Quant':
            float_prog, _ = slim.quant.convert(
                self.test_prog, self.exe.place, save_int8=True)
            test_input_names = [
                var.name for var in list(self.test_inputs.values())
            ]
            test_outputs = list(self.test_outputs.values())
            fluid.io.save_inference_model(
                dirname=save_dir,
                executor=self.exe,
                params_filename='__params__',
                feeded_var_names=test_input_names,
                target_vars=test_outputs,
                main_program=float_prog)

            model_info['_ModelInputsOutputs'] = dict()
            model_info['_ModelInputsOutputs']['test_inputs'] = [
                [k, v.name] for k, v in self.test_inputs.items()
            ]
            model_info['_ModelInputsOutputs']['test_outputs'] = [
                [k, v.name] for k, v in self.test_outputs.items()
            ]

        model_info['status'] = self.status
269 270 271 272
        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)
W
wuyefeilin 已提交
273 274

        # The flag of model for saving successfully
275 276 277 278
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model saved in {}.".format(save_dir))

    def export_inference_model(self, save_dir):
W
wuyefeilin 已提交
279 280 281 282 283 284 285 286 287 288 289
        test_input_names = [var.name for var in list(self.test_inputs.values())]
        test_outputs = list(self.test_outputs.values())
        fluid.io.save_inference_model(
            dirname=save_dir,
            executor=self.exe,
            params_filename='__params__',
            feeded_var_names=test_input_names,
            target_vars=test_outputs,
            main_program=self.test_prog)
        model_info = self.get_model_info()
        model_info['status'] = 'Infer'
290

W
wuyefeilin 已提交
291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        # Save input and output descrition of model
        model_info['_ModelInputsOutputs'] = dict()
        model_info['_ModelInputsOutputs']['test_inputs'] = [
            [k, v.name] for k, v in self.test_inputs.items()
        ]
        model_info['_ModelInputsOutputs']['test_outputs'] = [
            [k, v.name] for k, v in self.test_outputs.items()
        ]

        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)

        # The flag of model for saving successfully
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model for inference deploy saved in {}.".format(save_dir))

    def export_quant_model(self,
                           dataset,
                           save_dir,
                           batch_size=1,
                           batch_nums=10,
314
                           cache_dir="./.temp"):
W
wuyefeilin 已提交
315 316 317
        self.arrange_transform(transforms=dataset.transforms, mode='quant')
        dataset.num_samples = batch_size * batch_nums
        try:
318
            from utils import HumanSegPostTrainingQuantization
W
wuyefeilin 已提交
319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        except:
            raise Exception(
                "Model Quantization is not available, try to upgrade your paddlepaddle>=1.7.0"
            )
        is_use_cache_file = True
        if cache_dir is None:
            is_use_cache_file = False
        post_training_quantization = HumanSegPostTrainingQuantization(
            executor=self.exe,
            dataset=dataset,
            program=self.test_prog,
            inputs=self.test_inputs,
            outputs=self.test_outputs,
            batch_size=batch_size,
            batch_nums=batch_nums,
            scope=None,
            algo='KL',
            quantizable_op_type=["conv2d", "depthwise_conv2d", "mul"],
            is_full_quantize=False,
            is_use_cache_file=is_use_cache_file,
            cache_dir=cache_dir)
        post_training_quantization.quantize()
        post_training_quantization.save_quantized_model(save_dir)
342 343
        if cache_dir is not None:
            os.system('rm -r' + cache_dir)
W
wuyefeilin 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
        model_info = self.get_model_info()
        model_info['status'] = 'Quant'

        # Save input and output descrition of model
        model_info['_ModelInputsOutputs'] = dict()
        model_info['_ModelInputsOutputs']['test_inputs'] = [
            [k, v.name] for k, v in self.test_inputs.items()
        ]
        model_info['_ModelInputsOutputs']['test_outputs'] = [
            [k, v.name] for k, v in self.test_outputs.items()
        ]

        with open(
                osp.join(save_dir, 'model.yml'), encoding='utf-8',
                mode='w') as f:
            yaml.dump(model_info, f)

        # The flag of model for saving successfully
        open(osp.join(save_dir, '.success'), 'w').close()
        logging.info("Model for quant saved in {}.".format(save_dir))
364 365 366 367 368

    def default_optimizer(self,
                          learning_rate,
                          num_epochs,
                          num_steps_each_epoch,
W
wuyefeilin 已提交
369 370
                          lr_decay_power=0.9,
                          regularization_coeff=4e-5):
371 372 373 374 375 376 377 378 379 380
        decay_step = num_epochs * num_steps_each_epoch
        lr_decay = fluid.layers.polynomial_decay(
            learning_rate,
            decay_step,
            end_learning_rate=0,
            power=lr_decay_power)
        optimizer = fluid.optimizer.Momentum(
            lr_decay,
            momentum=0.9,
            regularization=fluid.regularizer.L2Decay(
W
wuyefeilin 已提交
381
                regularization_coeff=regularization_coeff))
382 383 384 385 386 387 388 389 390 391
        return optimizer

    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=2,
              eval_dataset=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
392
              pretrained_weights=None,
393 394 395 396
              resume_weights=None,
              optimizer=None,
              learning_rate=0.01,
              lr_decay_power=0.9,
W
wuyefeilin 已提交
397 398 399
              regularization_coeff=4e-5,
              use_vdl=False,
              quant=False):
400 401 402 403 404 405 406 407 408 409 410
        self.labels = train_dataset.labels
        self.train_transforms = train_dataset.transforms
        self.train_init = locals()
        self.begin_epoch = 0

        if optimizer is None:
            num_steps_each_epoch = train_dataset.num_samples // train_batch_size
            optimizer = self.default_optimizer(
                learning_rate=learning_rate,
                num_epochs=num_epochs,
                num_steps_each_epoch=num_steps_each_epoch,
W
wuyefeilin 已提交
411 412
                lr_decay_power=lr_decay_power,
                regularization_coeff=regularization_coeff)
413 414 415 416
        self.optimizer = optimizer
        self.build_program()
        self.net_initialize(
            startup_prog=fluid.default_startup_program(),
417
            pretrained_weights=pretrained_weights,
418
            resume_weights=resume_weights)
W
wuyefeilin 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431

        # 进行量化
        if quant:
            # 当 for_test=False ,返回类型为 fluid.CompiledProgram
            # 当 for_test=True ,返回类型为 fluid.Program
            self.train_prog = slim.quant.quant_aware(
                self.train_prog, self.exe.place, for_test=False)
            self.test_prog = slim.quant.quant_aware(
                self.test_prog, self.exe.place, for_test=True)
            # self.parallel_train_prog = self.train_prog.with_data_parallel(
            #     loss_name=self.train_outputs['loss'].name)
            self.status = 'Quant'

432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
        if self.begin_epoch >= num_epochs:
            raise ValueError(
                ("begin epoch[{}] is larger than num_epochs[{}]").format(
                    self.begin_epoch, num_epochs))

        if not osp.isdir(save_dir):
            if osp.exists(save_dir):
                os.remove(save_dir)
            os.makedirs(save_dir)

        # add arrange op tor transforms
        self.arrange_transform(
            transforms=train_dataset.transforms, mode='train')
        self.build_train_data_loader(
            dataset=train_dataset, batch_size=train_batch_size)

        if eval_dataset is not None:
            self.eval_transforms = eval_dataset.transforms
            self.test_transforms = copy.deepcopy(eval_dataset.transforms)

        lr = self.optimizer._learning_rate
        lr.persistable = True
        if isinstance(lr, fluid.framework.Variable):
            self.train_outputs['lr'] = lr

        # 多卡训练
        if self.parallel_train_prog is None:
            build_strategy = fluid.compiler.BuildStrategy()
460
            if self.env_info['place'] != 'cpu' and len(self.places) > 1:
461 462 463
                build_strategy.sync_batch_norm = self.sync_bn
            exec_strategy = fluid.ExecutionStrategy()
            exec_strategy.num_iteration_per_drop_scope = 1
W
wuyefeilin 已提交
464 465 466 467
            if quant:
                build_strategy.fuse_all_reduce_ops = False
                build_strategy.sync_batch_norm = False
                self.parallel_train_prog = self.train_prog.with_data_parallel(
468 469 470
                    loss_name=self.train_outputs['loss'].name,
                    build_strategy=build_strategy,
                    exec_strategy=exec_strategy)
W
wuyefeilin 已提交
471 472 473 474 475 476
            else:
                self.parallel_train_prog = fluid.CompiledProgram(
                    self.train_prog).with_data_parallel(
                        loss_name=self.train_outputs['loss'].name,
                        build_strategy=build_strategy,
                        exec_strategy=exec_strategy)
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662

        total_num_steps = math.floor(
            train_dataset.num_samples / train_batch_size)
        num_steps = 0
        time_stat = list()
        time_train_one_epoch = None
        time_eval_one_epoch = None

        total_num_steps_eval = 0
        # eval times
        total_eval_times = math.ceil(num_epochs / save_interval_epochs)
        eval_batch_size = train_batch_size
        if eval_dataset is not None:
            total_num_steps_eval = math.ceil(
                eval_dataset.num_samples / eval_batch_size)

        if use_vdl:
            from visualdl import LogWriter
            vdl_logdir = osp.join(save_dir, 'vdl_log')
            log_writer = LogWriter(vdl_logdir, sync_cycle=20)
            train_step_component = OrderedDict()
            eval_component = OrderedDict()

        best_miou = -1.0
        best_model_epoch = 1
        for i in range(self.begin_epoch, num_epochs):
            records = list()
            step_start_time = time.time()
            epoch_start_time = time.time()
            for step, data in enumerate(self.train_data_loader()):
                outputs = self.exe.run(
                    self.parallel_train_prog,
                    feed=data,
                    fetch_list=list(self.train_outputs.values()))
                outputs_avg = np.mean(np.array(outputs), axis=1)
                records.append(outputs_avg)

                # time estimated to complete the training
                currend_time = time.time()
                step_cost_time = currend_time - step_start_time
                step_start_time = currend_time
                if len(time_stat) < 20:
                    time_stat.append(step_cost_time)
                else:
                    time_stat[num_steps % 20] = step_cost_time

                num_steps += 1
                if num_steps % log_interval_steps == 0:
                    step_metrics = OrderedDict(
                        zip(list(self.train_outputs.keys()), outputs_avg))

                    if use_vdl:
                        for k, v in step_metrics.items():
                            if k not in train_step_component.keys():
                                with log_writer.mode('Each_step_while_Training'
                                                     ) as step_logger:
                                    train_step_component[
                                        k] = step_logger.scalar(
                                            'Training: {}'.format(k))
                            train_step_component[k].add_record(num_steps, v)

                    # 计算剩余时间
                    avg_step_time = np.mean(time_stat)
                    if time_train_one_epoch is not None:
                        eta = (num_epochs - i - 1) * time_train_one_epoch + (
                            total_num_steps - step - 1) * avg_step_time
                    else:
                        eta = ((num_epochs - i) * total_num_steps - step -
                               1) * avg_step_time
                    if time_eval_one_epoch is not None:
                        eval_eta = (total_eval_times - i // save_interval_epochs
                                    ) * time_eval_one_epoch
                    else:
                        eval_eta = (total_eval_times - i // save_interval_epochs
                                    ) * total_num_steps_eval * avg_step_time
                    eta_str = seconds_to_hms(eta + eval_eta)

                    logging.info(
                        "[TRAIN] Epoch={}/{}, Step={}/{}, {}, time_each_step={}s, eta={}"
                        .format(i + 1, num_epochs, step + 1, total_num_steps,
                                dict2str(step_metrics), round(avg_step_time, 2),
                                eta_str))

            train_metrics = OrderedDict(
                zip(list(self.train_outputs.keys()), np.mean(records, axis=0)))
            logging.info('[TRAIN] Epoch {} finished, {} .'.format(
                i + 1, dict2str(train_metrics)))
            time_train_one_epoch = time.time() - epoch_start_time

            eval_epoch_start_time = time.time()
            if (i + 1) % save_interval_epochs == 0 or i == num_epochs - 1:
                current_save_dir = osp.join(save_dir, "epoch_{}".format(i + 1))
                if not osp.isdir(current_save_dir):
                    os.makedirs(current_save_dir)
                if eval_dataset is not None:
                    self.eval_metrics = self.evaluate(
                        eval_dataset=eval_dataset,
                        batch_size=eval_batch_size,
                        epoch_id=i + 1)
                    # 保存最优模型
                    current_miou = self.eval_metrics['miou']
                    if current_miou > best_miou:
                        best_miou = current_miou
                        best_model_epoch = i + 1
                        best_model_dir = osp.join(save_dir, "best_model")
                        self.save_model(save_dir=best_model_dir)
                    if use_vdl:
                        for k, v in self.eval_metrics.items():
                            if isinstance(v, list):
                                continue
                            if isinstance(v, np.ndarray):
                                if v.size > 1:
                                    continue
                            if k not in eval_component:
                                with log_writer.mode('Each_Epoch_on_Eval_Data'
                                                     ) as eval_logger:
                                    eval_component[k] = eval_logger.scalar(
                                        'Evaluation: {}'.format(k))
                            eval_component[k].add_record(i + 1, v)
                self.save_model(save_dir=current_save_dir)
                time_eval_one_epoch = time.time() - eval_epoch_start_time
                if eval_dataset is not None:
                    logging.info(
                        'Current evaluated best model in eval_dataset is epoch_{}, miou={}'
                        .format(best_model_epoch, best_miou))

    def evaluate(self, eval_dataset, batch_size=1, epoch_id=None):
        """评估。

        Args:
            eval_dataset (paddlex.datasets): 评估数据读取器。
            batch_size (int): 评估时的batch大小。默认1。
            epoch_id (int): 当前评估模型所在的训练轮数。
            return_details (bool): 是否返回详细信息。默认False。

        Returns:
            dict: 当return_details为False时,返回dict。包含关键字:'miou'、'categore_iou'、'macc'、
                'category_acc'和'kappa',分别表示平均iou、各类别iou、平均准确率、各类别准确率和kappa系数。
            tuple (metrics, eval_details):当return_details为True时,增加返回dict (eval_details),
                包含关键字:'confusion_matrix',表示评估的混淆矩阵。
        """
        self.arrange_transform(transforms=eval_dataset.transforms, mode='train')
        total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
        conf_mat = ConfusionMatrix(self.num_classes, streaming=True)
        data_generator = eval_dataset.generator(
            batch_size=batch_size, drop_last=False)
        if not hasattr(self, 'parallel_test_prog'):
            self.parallel_test_prog = fluid.CompiledProgram(
                self.test_prog).with_data_parallel(
                    share_vars_from=self.parallel_train_prog)
        logging.info(
            "Start to evaluating(total_samples={}, total_steps={})...".format(
                eval_dataset.num_samples, total_steps))
        for step, data in tqdm.tqdm(
                enumerate(data_generator()), total=total_steps):
            images = np.array([d[0] for d in data])
            labels = np.array([d[1] for d in data])
            num_samples = images.shape[0]
            if num_samples < batch_size:
                num_pad_samples = batch_size - num_samples
                pad_images = np.tile(images[0:1], (num_pad_samples, 1, 1, 1))
                images = np.concatenate([images, pad_images])
            feed_data = {'image': images}
            outputs = self.exe.run(
                self.parallel_test_prog,
                feed=feed_data,
                fetch_list=list(self.test_outputs.values()),
                return_numpy=True)
            pred = outputs[0]
            if num_samples < batch_size:
                pred = pred[0:num_samples]

            mask = labels != self.ignore_index
            conf_mat.calculate(pred=pred, label=labels, ignore=mask)
            _, iou = conf_mat.mean_iou()

            logging.debug("[EVAL] Epoch={}, Step={}/{}, iou={}".format(
                epoch_id, step + 1, total_steps, iou))

        category_iou, miou = conf_mat.mean_iou()
        category_acc, macc = conf_mat.accuracy()

        metrics = OrderedDict(
            zip(['miou', 'category_iou', 'macc', 'category_acc', 'kappa'],
                [miou, category_iou, macc, category_acc,
                 conf_mat.kappa()]))
W
wuyefeilin 已提交
663 664 665

        logging.info('[EVAL] Finished, Epoch={}, {} .'.format(
            epoch_id, dict2str(metrics)))
666 667 668 669 670
        return metrics

    def predict(self, im_file, transforms=None):
        """预测。
        Args:
W
wuyefeilin 已提交
671
            img_file(str|np.ndarray): 预测图像。
672 673 674 675 676 677
            transforms(paddlex.cv.transforms): 数据预处理操作。

        Returns:
            dict: 包含关键字'label_map'和'score_map', 'label_map'存储预测结果灰度图,
                像素值表示对应的类别,'score_map'存储各类别的概率,shape=(h, w, num_classes)
        """
W
wuyefeilin 已提交
678 679 680 681
        if isinstance(im_file, str):
            if not osp.exists(im_file):
                raise ValueError(
                    'The Image file does not exist: {}'.format(im_file))
682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714

        if transforms is None and not hasattr(self, 'test_transforms'):
            raise Exception("transforms need to be defined, now is None.")
        if transforms is not None:
            self.arrange_transform(transforms=transforms, mode='test')
            im, im_info = transforms(im_file)
        else:
            self.arrange_transform(transforms=self.test_transforms, mode='test')
            im, im_info = self.test_transforms(im_file)
        im = np.expand_dims(im, axis=0)
        result = self.exe.run(
            self.test_prog,
            feed={'image': im},
            fetch_list=list(self.test_outputs.values()))
        pred = result[0]
        logit = result[1]
        logit = np.squeeze(logit)
        logit = np.transpose(logit, (1, 2, 0))
        pred = np.squeeze(pred).astype('uint8')
        keys = list(im_info.keys())
        for k in keys[::-1]:
            if k == 'shape_before_resize':
                h, w = im_info[k][0], im_info[k][1]
                pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
                logit = cv2.resize(logit, (w, h), cv2.INTER_LINEAR)
            elif k == 'shape_before_padding':
                h, w = im_info[k][0], im_info[k][1]
                pred = pred[0:h, 0:w]
                logit = logit[0:h, 0:w, :]

        return {'label_map': pred, 'score_map': logit}


W
wuyefeilin 已提交
715 716 717 718
class HumanSegLite(SegModel):
    # DeepLab ShuffleNet
    def build_net(self, mode='train'):
        """应根据不同的情况进行构建"""
719
        model = ShuffleSeg(
W
wuyefeilin 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
            self.num_classes,
            mode=mode,
            use_bce_loss=self.use_bce_loss,
            use_dice_loss=self.use_dice_loss,
            class_weight=self.class_weight,
            ignore_index=self.ignore_index)
        inputs = model.generate_inputs()
        model_out = model.build_net(inputs)
        outputs = OrderedDict()
        if mode == 'train':
            self.optimizer.minimize(model_out)
            outputs['loss'] = model_out
        else:
            outputs['pred'] = model_out[0]
            outputs['logit'] = model_out[1]
        return inputs, outputs


class HumanSegServer(SegModel):
739
    # DeepLab Xception
W
wuyefeilin 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
    def __init__(self,
                 num_classes=2,
                 backbone='Xception65',
                 output_stride=16,
                 aspp_with_sep_conv=True,
                 decoder_use_sep_conv=True,
                 encoder_with_aspp=True,
                 enable_decoder=True,
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
                 ignore_index=255,
                 sync_bn=True):
        super().__init__(
            num_classes=num_classes,
            use_bce_loss=use_bce_loss,
            use_dice_loss=use_dice_loss,
            class_weight=class_weight,
            ignore_index=ignore_index,
            sync_bn=sync_bn)
        self.init_params = locals()

        self.output_stride = output_stride

        if backbone not in ['Xception65', 'Xception41']:
            raise ValueError("backbone: {} is set wrong. it should be one of "
                             "('Xception65', 'Xception41')".format(backbone))

        self.backbone = backbone
        self.aspp_with_sep_conv = aspp_with_sep_conv
        self.decoder_use_sep_conv = decoder_use_sep_conv
        self.encoder_with_aspp = encoder_with_aspp
        self.enable_decoder = enable_decoder
        self.sync_bn = sync_bn

    def build_net(self, mode='train'):
776
        model = DeepLabv3p(
W
wuyefeilin 已提交
777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
            self.num_classes,
            mode=mode,
            backbone=self.backbone,
            output_stride=self.output_stride,
            aspp_with_sep_conv=self.aspp_with_sep_conv,
            decoder_use_sep_conv=self.decoder_use_sep_conv,
            encoder_with_aspp=self.encoder_with_aspp,
            enable_decoder=self.enable_decoder,
            use_bce_loss=self.use_bce_loss,
            use_dice_loss=self.use_dice_loss,
            class_weight=self.class_weight,
            ignore_index=self.ignore_index)
        inputs = model.generate_inputs()
        model_out = model.build_net(inputs)
        outputs = OrderedDict()
        if mode == 'train':
            self.optimizer.minimize(model_out)
            outputs['loss'] = model_out
        else:
            outputs['pred'] = model_out[0]
            outputs['logit'] = model_out[1]
        return inputs, outputs


801
class HumanSegMobile(SegModel):
W
wuyefeilin 已提交
802 803 804
    def __init__(self,
                 num_classes=2,
                 stage1_num_modules=1,
805 806
                 stage1_num_blocks=[1],
                 stage1_num_channels=[32],
W
wuyefeilin 已提交
807
                 stage2_num_modules=1,
808 809 810 811 812 813 814 815
                 stage2_num_blocks=[2, 2],
                 stage2_num_channels=[16, 32],
                 stage3_num_modules=1,
                 stage3_num_blocks=[2, 2, 2],
                 stage3_num_channels=[16, 32, 64],
                 stage4_num_modules=1,
                 stage4_num_blocks=[2, 2, 2, 2],
                 stage4_num_channels=[16, 32, 64, 128],
W
wuyefeilin 已提交
816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
                 ignore_index=255,
                 sync_bn=True):
        super().__init__(
            num_classes=num_classes,
            use_bce_loss=use_bce_loss,
            use_dice_loss=use_dice_loss,
            class_weight=class_weight,
            ignore_index=ignore_index,
            sync_bn=sync_bn)
        self.init_params = locals()

        self.stage1_num_modules = stage1_num_modules
        self.stage1_num_blocks = stage1_num_blocks
        self.stage1_num_channels = stage1_num_channels
        self.stage2_num_modules = stage2_num_modules
        self.stage2_num_blocks = stage2_num_blocks
        self.stage2_num_channels = stage2_num_channels
        self.stage3_num_modules = stage3_num_modules
        self.stage3_num_blocks = stage3_num_blocks
        self.stage3_num_channels = stage3_num_channels
        self.stage4_num_modules = stage4_num_modules
        self.stage4_num_blocks = stage4_num_blocks
        self.stage4_num_channels = stage4_num_channels

    def build_net(self, mode='train'):
        """应根据不同的情况进行构建"""
845
        model = HRNet(
W
wuyefeilin 已提交
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873
            self.num_classes,
            mode=mode,
            stage1_num_modules=self.stage1_num_modules,
            stage1_num_blocks=self.stage1_num_blocks,
            stage1_num_channels=self.stage1_num_channels,
            stage2_num_modules=self.stage2_num_modules,
            stage2_num_blocks=self.stage2_num_blocks,
            stage2_num_channels=self.stage2_num_channels,
            stage3_num_modules=self.stage3_num_modules,
            stage3_num_blocks=self.stage3_num_blocks,
            stage3_num_channels=self.stage3_num_channels,
            stage4_num_modules=self.stage4_num_modules,
            stage4_num_blocks=self.stage4_num_blocks,
            stage4_num_channels=self.stage4_num_channels,
            use_bce_loss=self.use_bce_loss,
            use_dice_loss=self.use_dice_loss,
            class_weight=self.class_weight,
            ignore_index=self.ignore_index)
        inputs = model.generate_inputs()
        model_out = model.build_net(inputs)
        outputs = OrderedDict()
        if mode == 'train':
            self.optimizer.minimize(model_out)
            outputs['loss'] = model_out
        else:
            outputs['pred'] = model_out[0]
            outputs['logit'] = model_out[1]
        return inputs, outputs
874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906

    def train(self,
              num_epochs,
              train_dataset,
              train_batch_size=2,
              eval_dataset=None,
              save_interval_epochs=1,
              log_interval_steps=2,
              save_dir='output',
              pretrained_weights=None,
              resume_weights=None,
              optimizer=None,
              learning_rate=0.01,
              lr_decay_power=0.9,
              regularization_coeff=5e-4,
              use_vdl=False,
              quant=False):
        super().train(
            num_epochs=num_epochs,
            train_dataset=train_dataset,
            train_batch_size=train_batch_size,
            eval_dataset=eval_dataset,
            save_interval_epochs=save_interval_epochs,
            log_interval_steps=log_interval_steps,
            save_dir=save_dir,
            pretrained_weights=pretrained_weights,
            resume_weights=resume_weights,
            optimizer=optimizer,
            learning_rate=learning_rate,
            lr_decay_power=lr_decay_power,
            regularization_coeff=regularization_coeff,
            use_vdl=use_vdl,
            quant=quant)