val.py 5.3 KB
Newer Older
C
chenguowei01 已提交
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chenguowei01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import os.path as osp
import math

from paddle.fluid.dygraph.base import to_variable
import numpy as np
import paddle.fluid as fluid

from datasets.dataset import Dataset
import transforms as T
import models
import utils.logging as logging
from utils import get_environ_info
from utils import ConfusionMatrix


def parse_args():
    parser = argparse.ArgumentParser(description='Model training')

    # params of model
    parser.add_argument(
        '--model_name',
        dest='model_name',
        help="Model type for traing, which is one of ('UNet')",
        type=str,
        default='UNet')

    # params of dataset
    parser.add_argument(
        '--data_dir',
        dest='data_dir',
        help='The root directory of dataset',
        type=str)
    parser.add_argument(
        '--val_list',
        dest='val_list',
        help='Val list file of dataset',
        type=str,
        default=None)
    parser.add_argument(
        '--num_classes',
        dest='num_classes',
        help='Number of classes',
        type=int,
        default=2)
    parser.add_argument(
        '--ingore_index',
        dest='ignore_index',
        help=
        'The pixel equaling ignore_index will not be computed during evaluation',
        type=int,
        default=255)

    # params of evaluate
    parser.add_argument(
        "--input_size",
        dest="input_size",
        help="The image size for net inputs.",
        nargs=2,
        default=[512, 512],
        type=int)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        help='Mini batch size',
        type=int,
        default=2)
    parser.add_argument(
        '--model_dir',
        dest='model_dir',
        help='The path of model for evaluation',
        type=str,
        default=None)

    return parser.parse_args()


def evaluate(model,
             eval_dataset=None,
             model_dir=None,
             num_classes=None,
             batch_size=2,
             ignore_index=255,
             epoch_id=None):
    ckpt_path = osp.join(model_dir, 'model')
    para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path)
    model.set_dict(para_state_dict)
    model.eval()

    data_generator = eval_dataset.generator(
        batch_size=batch_size, drop_last=True)
    total_steps = math.ceil(eval_dataset.num_samples * 1.0 / batch_size)
    conf_mat = ConfusionMatrix(num_classes, streaming=True)

    logging.info(
        "Start to evaluating(total_samples={}, total_steps={})...".format(
            eval_dataset.num_samples, total_steps))
    for step, data in enumerate(data_generator()):
        images = np.array([d[0] for d in data])
        labels = np.array([d[1] for d in data]).astype('int64')
        images = to_variable(images)
        pred, _ = model(images, labels, mode='eval')

        pred = pred.numpy()
        mask = labels != ignore_index

        conf_mat.calculate(pred=pred, label=labels, ignore=mask)
        _, iou = conf_mat.mean_iou()

        logging.info("[EVAL] Epoch={}, Step={}/{}, iou={}".format(
            epoch_id, step + 1, total_steps, iou))

    category_iou, miou = conf_mat.mean_iou()
    category_acc, macc = conf_mat.accuracy()
    logging.info("[EVAL] #image={} acc={:.4f} IoU={:.4f}".format(
        eval_dataset.num_samples, macc, miou))
    logging.info("[EVAL] Category IoU: " + str(category_iou))
    logging.info("[EVAL] Category Acc: " + str(category_acc))
    logging.info("[EVAL] Kappa:{:.4f} ".format(conf_mat.kappa()))


def arrange_transform(transforms, mode='train'):
    arrange_transform = T.ArrangeSegmenter
    if type(transforms.transforms[-1]).__name__.startswith('Arrange'):
        transforms.transforms[-1] = arrange_transform(mode=mode)
    else:
        transforms.transforms.append(arrange_transform(mode=mode))


def main(args):
    eval_transforms = T.Compose([T.Resize(args.input_size), T.Normalize()])
    arrange_transform(eval_transforms, mode='eval')
    eval_dataset = Dataset(
        data_dir=args.data_dir,
        file_list=args.val_list,
        transforms=eval_transforms,
        num_workers='auto',
        buffer_size=100,
        parallel_method='thread',
        shuffle=False)

    if args.model_name == 'UNet':
        model = models.UNet(num_classes=args.num_classes)

    evaluate(
        model,
        eval_dataset,
        model_dir=args.model_dir,
        num_classes=args.num_classes,
        batch_size=args.batch_size,
        ignore_index=args.ignore_index,
    )


if __name__ == '__main__':
    args = parse_args()
    env_info = get_environ_info()
    if env_info['place'] == 'cpu':
        places = fluid.CPUPlace()
    else:
        places = fluid.CUDAPlace(0)
    with fluid.dygraph.guard(places):
        main(args)