val.py 3.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import numpy as np
import tqdm
import cv2
from paddle.fluid.dygraph.base import to_variable
import paddle.fluid as fluid
import paddle.nn.functional as F
import paddle

M
michaelowenliu 已提交
25 26 27
import paddleseg.utils.logger as logger
from paddleseg.utils import ConfusionMatrix
from paddleseg.utils import Timer, calculate_eta
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69


def evaluate(model,
             eval_dataset=None,
             model_dir=None,
             num_classes=None,
             ignore_index=255,
             iter_id=None):
    ckpt_path = os.path.join(model_dir, 'model')
    para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path)
    model.set_dict(para_state_dict)
    model.eval()

    total_iters = len(eval_dataset)
    conf_mat = ConfusionMatrix(num_classes, streaming=True)

    logger.info(
        "Start to evaluating(total_samples={}, total_iters={})...".format(
            len(eval_dataset), total_iters))
    timer = Timer()
    timer.start()
    for iter, (im, im_info, label) in tqdm.tqdm(
            enumerate(eval_dataset), total=total_iters):
        im = to_variable(im)
        # pred, _ = model(im)
        logits = model(im)
        pred = paddle.argmax(logits[0], axis=1)
        pred = pred.numpy().astype('float32')
        pred = np.squeeze(pred)
        for info in im_info[::-1]:
            if info[0] == 'resize':
                h, w = info[1][0], info[1][1]
                pred = cv2.resize(pred, (w, h), cv2.INTER_NEAREST)
            elif info[0] == 'padding':
                h, w = info[1][0], info[1][1]
                pred = pred[0:h, 0:w]
            else:
                raise Exception("Unexpected info '{}' in im_info".format(
                    info[0]))
        pred = pred[np.newaxis, :, :, np.newaxis]
        pred = pred.astype('int64')
        mask = label != ignore_index
M
michaelowenliu 已提交
70
        # To-DO Test Execution Time
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
        conf_mat.calculate(pred=pred, label=label, ignore=mask)
        _, iou = conf_mat.mean_iou()

        time_iter = timer.elapsed_time()
        remain_iter = total_iters - iter - 1
        logger.debug(
            "[EVAL] iter_id={}, iter={}/{}, iou={:4f}, sec/iter={:.4f} | ETA {}"
            .format(iter_id, iter + 1, total_iters, iou, time_iter,
                    calculate_eta(remain_iter, time_iter)))
        timer.restart()

    category_iou, miou = conf_mat.mean_iou()
    category_acc, macc = conf_mat.accuracy()
    logger.info("[EVAL] #Images={} mAcc={:.4f} mIoU={:.4f}".format(
        len(eval_dataset), macc, miou))
    logger.info("[EVAL] Category IoU: " + str(category_iou))
    logger.info("[EVAL] Category Acc: " + str(category_acc))
    logger.info("[EVAL] Kappa:{:.4f} ".format(conf_mat.kappa()))
    return miou, macc