utils.py 6.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
wuzewu 已提交
15
import contextlib
16 17 18 19
import os
import numpy as np
import math
import cv2
W
wuzewu 已提交
20
import tempfile
21
import paddle.fluid as fluid
W
wuzewu 已提交
22
from urllib.parse import urlparse, unquote
23

W
wuzewu 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36
import filelock

import paddleseg.env as segenv
from paddleseg.utils import logger
from paddleseg.utils.download import download_file_and_uncompress


@contextlib.contextmanager
def generate_tempdir(directory: str = None, **kwargs):
    '''Generate a temporary directory'''
    directory = segenv.TMP_HOME if not directory else directory
    with tempfile.TemporaryDirectory(dir=directory, **kwargs) as _dir:
        yield _dir
37 38 39 40 41 42 43 44 45 46 47 48 49


def seconds_to_hms(seconds):
    h = math.floor(seconds / 3600)
    m = math.floor((seconds - h * 3600) / 60)
    s = int(seconds - h * 3600 - m * 60)
    hms_str = "{}:{}:{}".format(h, m, s)
    return hms_str


def load_pretrained_model(model, pretrained_model):
    if pretrained_model is not None:
        logger.info('Load pretrained model from {}'.format(pretrained_model))
W
wuzewu 已提交
50 51 52 53 54 55 56 57 58 59 60 61
        # download pretrained model from url
        if urlparse(pretrained_model).netloc:
            pretrained_model = unquote(pretrained_model)
            savename = pretrained_model.split('/')[-1].split('.')[0]
            with generate_tempdir() as _dir:
                with filelock.FileLock(os.path.join(segenv.TMP_HOME, savename)):
                    pretrained_model = download_file_and_uncompress(
                        pretrained_model,
                        savepath=_dir,
                        extrapath=segenv.PRETRAINED_MODEL_HOME,
                        extraname=savename)

62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        if os.path.exists(pretrained_model):
            ckpt_path = os.path.join(pretrained_model, 'model')
            try:
                para_state_dict, _ = fluid.load_dygraph(ckpt_path)
            except:
                para_state_dict = fluid.load_program_state(pretrained_model)

            model_state_dict = model.state_dict()
            keys = model_state_dict.keys()
            num_params_loaded = 0
            for k in keys:
                if k not in para_state_dict:
                    logger.warning("{} is not in pretrained model".format(k))
                elif list(para_state_dict[k].shape) != list(
                        model_state_dict[k].shape):
                    logger.warning(
                        "[SKIP] Shape of pretrained params {} doesn't match.(Pretrained: {}, Actual: {})"
                        .format(k, para_state_dict[k].shape,
                                model_state_dict[k].shape))
                else:
                    model_state_dict[k] = para_state_dict[k]
                    num_params_loaded += 1
            model.set_dict(model_state_dict)
            logger.info("There are {}/{} varaibles are loaded.".format(
                num_params_loaded, len(model_state_dict)))

        else:
            raise ValueError(
                'The pretrained model directory is not Found: {}'.format(
                    pretrained_model))
    else:
        logger.warning('No pretrained model to load, train from scratch')


def resume(model, optimizer, resume_model):
    if resume_model is not None:
        logger.info('Resume model from {}'.format(resume_model))
        if os.path.exists(resume_model):
            resume_model = os.path.normpath(resume_model)
            ckpt_path = os.path.join(resume_model, 'model')
            para_state_dict, opti_state_dict = fluid.load_dygraph(ckpt_path)
            model.set_dict(para_state_dict)
            optimizer.set_dict(opti_state_dict)
            epoch = resume_model.split('_')[-1]
            if epoch.isdigit():
                epoch = int(epoch)
            return epoch
        else:
            raise ValueError(
                'The resume model directory is not Found: {}'.format(
                    resume_model))
    else:
        logger.info('No model need to resume')


def visualize(image, result, save_dir=None, weight=0.6):
    """
    Convert segment result to color image, and save added image.
    Args:
        image: the path of origin image
        result: the predict result of image
        save_dir: the directory for saving visual image
        weight: the image weight of visual image, and the result weight is (1 - weight)
    """
    color_map = get_color_map_list(256)
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
    pseudo_img = np.dstack((c1, c2, c3))

    im = cv2.imread(image)
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_name = os.path.split(image)[-1]
        out_path = os.path.join(save_dir, image_name)
        cv2.imwrite(out_path, vis_result)
    else:
        return vis_result


def get_color_map_list(num_classes):
    """ Returns the color map for visualizing the segmentation mask,
        which can support arbitrary number of classes.
    Args:
        num_classes: Number of classes
    Returns:
        The color map
    """
    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = color_map[1:]
    return color_map