ade.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import numpy as np
from PIL import Image

W
wuzewu 已提交
20
import paddleseg.env as segenv
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
from .dataset import Dataset
from paddleseg.utils.download import download_file_and_uncompress
from paddleseg.cvlibs import manager
from paddleseg.transforms import Compose

URL = "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip"


@manager.DATASETS.add_component
class ADE20K(Dataset):
    """ADE20K dataset `http://sceneparsing.csail.mit.edu/`.
    Args:
        dataset_root: The dataset directory.
        mode: Which part of dataset to use.. it is one of ('train', 'val'). Default: 'train'.
        transforms: Transforms for image.
        download: Whether to download dataset if `dataset_root` is None.
    """

    def __init__(self,
                 dataset_root=None,
                 mode='train',
                 transforms=None,
                 download=True):
        self.dataset_root = dataset_root
        self.transforms = Compose(transforms)
        self.mode = mode
        self.file_list = list()
        self.num_classes = 150

        if mode.lower() not in ['train', 'val']:
            raise Exception(
                "`mode` should be one of ('train', 'val') in ADE20K dataset, but got {}."
                .format(mode))

        if self.transforms is None:
            raise Exception("`transforms` is necessary, but it is None.")

        if self.dataset_root is None:
            if not download:
                raise Exception(
                    "`dataset_root` not set and auto download disabled.")
            self.dataset_root = download_file_and_uncompress(
                url=URL,
W
wuzewu 已提交
64 65
                savepath=segenv.DATA_HOME,
                extrapath=segenv.DATA_HOME,
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
                extraname='ADEChallengeData2016')
        elif not os.path.exists(self.dataset_root):
            raise Exception('there is not `dataset_root`: {}.'.format(
                self.dataset_root))

        if mode == 'train':
            img_dir = os.path.join(self.dataset_root, 'images/training')
            grt_dir = os.path.join(self.dataset_root, 'annotations/training')
        elif mode == 'val':
            img_dir = os.path.join(self.dataset_root, 'images/validation')
            grt_dir = os.path.join(self.dataset_root, 'annotations/validation')
        img_files = os.listdir(img_dir)
        grt_files = [i.replace('.jpg', '.png') for i in img_files]
        for i in range(len(img_files)):
            img_path = os.path.join(img_dir, img_files[i])
            grt_path = os.path.join(grt_dir, grt_files[i])
            self.file_list.append([img_path, grt_path])

    def __getitem__(self, idx):
        image_path, grt_path = self.file_list[idx]
        if self.mode == 'test':
            im, im_info, _ = self.transforms(im=image_path)
            im = im[np.newaxis, ...]
            return im, im_info, image_path
        elif self.mode == 'val':
            im, im_info, _ = self.transforms(im=image_path)
            im = im[np.newaxis, ...]
            label = np.asarray(Image.open(grt_path))
            label = label - 1
            label = label[np.newaxis, np.newaxis, :, :]
            return im, im_info, label
        else:
            im, im_info, label = self.transforms(im=image_path, label=grt_path)
            label = label - 1
            return im, label