transforms.py 19.6 KB
Newer Older
R
root 已提交
1
# coding: utf8
C
chenguowei01 已提交
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
C
chenguowei01 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random
C
chenguowei01 已提交
17 18
from collections import OrderedDict

C
chenguowei01 已提交
19 20 21
import numpy as np
from PIL import Image
import cv2
C
chenguowei01 已提交
22 23

from .functional import *
C
chenguowei01 已提交
24 25 26


class Compose:
C
chenguowei01 已提交
27
    def __init__(self, transforms, to_rgb=True):
C
chenguowei01 已提交
28 29 30 31 32 33 34 35 36 37
        if not isinstance(transforms, list):
            raise TypeError('The transforms must be a list!')
        if len(transforms) < 1:
            raise ValueError('The length of transforms ' + \
                            'must be equal or larger than 1!')
        self.transforms = transforms
        self.to_rgb = to_rgb

    def __call__(self, im, im_info=None, label=None):
        if im_info is None:
C
chenguowei01 已提交
38
            im_info = list()
C
chenguowei01 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
        if isinstance(im, str):
            im = cv2.imread(im).astype('float32')
        if isinstance(label, str):
            label = np.asarray(Image.open(label))
        if im is None:
            raise ValueError('Can\'t read The image file {}!'.format(im))
        if self.to_rgb:
            im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB)

        for op in self.transforms:
            outputs = op(im, im_info, label)
            im = outputs[0]
            if len(outputs) >= 2:
                im_info = outputs[1]
            if len(outputs) == 3:
                label = outputs[2]
C
chenguowei01 已提交
55 56 57 58
        im = permute(im)
        if len(outputs) == 3:
            label = label[np.newaxis, :, :]
        return (im, im_info, label)
C
chenguowei01 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119


class RandomHorizontalFlip:
    def __init__(self, prob=0.5):
        self.prob = prob

    def __call__(self, im, im_info=None, label=None):
        if random.random() < self.prob:
            im = horizontal_flip(im)
            if label is not None:
                label = horizontal_flip(label)
        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class RandomVerticalFlip:
    def __init__(self, prob=0.1):
        self.prob = prob

    def __call__(self, im, im_info=None, label=None):
        if random.random() < self.prob:
            im = vertical_flip(im)
            if label is not None:
                label = vertical_flip(label)
        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class Resize:
    # The interpolation mode
    interp_dict = {
        'NEAREST': cv2.INTER_NEAREST,
        'LINEAR': cv2.INTER_LINEAR,
        'CUBIC': cv2.INTER_CUBIC,
        'AREA': cv2.INTER_AREA,
        'LANCZOS4': cv2.INTER_LANCZOS4
    }

    def __init__(self, target_size=512, interp='LINEAR'):
        self.interp = interp
        if not (interp == "RANDOM" or interp in self.interp_dict):
            raise ValueError("interp should be one of {}".format(
                self.interp_dict.keys()))
        if isinstance(target_size, list) or isinstance(target_size, tuple):
            if len(target_size) != 2:
                raise TypeError(
                    'when target is list or tuple, it should include 2 elements, but it is {}'
                    .format(target_size))
        elif not isinstance(target_size, int):
            raise TypeError(
                "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
                .format(type(target_size)))

        self.target_size = target_size

    def __call__(self, im, im_info=None, label=None):
        if im_info is None:
C
chenguowei01 已提交
120 121
            im_info = list()
        im_info.append(('resize', im.shape[:2]))
C
chenguowei01 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
        if not isinstance(im, np.ndarray):
            raise TypeError("Resize: image type is not numpy.")
        if len(im.shape) != 3:
            raise ValueError('Resize: image is not 3-dimensional.')
        if self.interp == "RANDOM":
            interp = random.choice(list(self.interp_dict.keys()))
        else:
            interp = self.interp
        im = resize(im, self.target_size, self.interp_dict[interp])
        if label is not None:
            label = resize(label, self.target_size, cv2.INTER_NEAREST)

        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class ResizeByLong:
    def __init__(self, long_size):
        self.long_size = long_size

    def __call__(self, im, im_info=None, label=None):
        if im_info is None:
C
chenguowei01 已提交
146
            im_info = list()
C
chenguowei01 已提交
147

C
chenguowei01 已提交
148
        im_info.append(('resize', im.shape[:2]))
C
chenguowei01 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        im = resize_long(im, self.long_size)
        if label is not None:
            label = resize_long(label, self.long_size, cv2.INTER_NEAREST)

        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class ResizeRangeScaling:
    def __init__(self, min_value=400, max_value=600):
        if min_value > max_value:
            raise ValueError('min_value must be less than max_value, '
                             'but they are {} and {}.'.format(
                                 min_value, max_value))
        self.min_value = min_value
        self.max_value = max_value

    def __call__(self, im, im_info=None, label=None):
        if self.min_value == self.max_value:
            random_size = self.max_value
        else:
            random_size = int(
                np.random.uniform(self.min_value, self.max_value) + 0.5)
        im = resize_long(im, random_size, cv2.INTER_LINEAR)
        if label is not None:
            label = resize_long(label, random_size, cv2.INTER_NEAREST)

        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class ResizeStepScaling:
    def __init__(self,
                 min_scale_factor=0.75,
                 max_scale_factor=1.25,
                 scale_step_size=0.25):
        if min_scale_factor > max_scale_factor:
            raise ValueError(
                'min_scale_factor must be less than max_scale_factor, '
                'but they are {} and {}.'.format(min_scale_factor,
                                                 max_scale_factor))
        self.min_scale_factor = min_scale_factor
        self.max_scale_factor = max_scale_factor
        self.scale_step_size = scale_step_size

    def __call__(self, im, im_info=None, label=None):
        if self.min_scale_factor == self.max_scale_factor:
            scale_factor = self.min_scale_factor

        elif self.scale_step_size == 0:
            scale_factor = np.random.uniform(self.min_scale_factor,
                                             self.max_scale_factor)

        else:
            num_steps = int((self.max_scale_factor - self.min_scale_factor) /
                            self.scale_step_size + 1)
            scale_factors = np.linspace(self.min_scale_factor,
                                        self.max_scale_factor,
                                        num_steps).tolist()
            np.random.shuffle(scale_factors)
            scale_factor = scale_factors[0]
        w = int(round(scale_factor * im.shape[1]))
        h = int(round(scale_factor * im.shape[0]))

        im = resize(im, (w, h), cv2.INTER_LINEAR)
        if label is not None:
            label = resize(label, (w, h), cv2.INTER_NEAREST)

        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class Normalize:
    def __init__(self, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]):
        self.mean = mean
        self.std = std
        if not (isinstance(self.mean, list) and isinstance(self.std, list)):
            raise ValueError("{}: input type is invalid.".format(self))
        from functools import reduce
        if reduce(lambda x, y: x * y, self.std) == 0:
            raise ValueError('{}: std is invalid!'.format(self))

    def __call__(self, im, im_info=None, label=None):
        mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
        std = np.array(self.std)[np.newaxis, np.newaxis, :]
        im = normalize(im, mean, std)

        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class Padding:
    def __init__(self,
                 target_size,
                 im_padding_value=[127.5, 127.5, 127.5],
                 label_padding_value=255):
        if isinstance(target_size, list) or isinstance(target_size, tuple):
            if len(target_size) != 2:
                raise ValueError(
                    'when target is list or tuple, it should include 2 elements, but it is {}'
                    .format(target_size))
        elif not isinstance(target_size, int):
            raise TypeError(
                "Type of target_size is invalid. Must be Integer or List or tuple, now is {}"
                .format(type(target_size)))
        self.target_size = target_size
        self.im_padding_value = im_padding_value
        self.label_padding_value = label_padding_value

    def __call__(self, im, im_info=None, label=None):
        if im_info is None:
C
chenguowei01 已提交
268 269
            im_info = list()
        im_info.append(('padding', im.shape[:2]))
C
chenguowei01 已提交
270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

        im_height, im_width = im.shape[0], im.shape[1]
        if isinstance(self.target_size, int):
            target_height = self.target_size
            target_width = self.target_size
        else:
            target_height = self.target_size[1]
            target_width = self.target_size[0]
        pad_height = target_height - im_height
        pad_width = target_width - im_width
        if pad_height < 0 or pad_width < 0:
            raise ValueError(
                'the size of image should be less than target_size, but the size of image ({}, {}), is larger than target_size ({}, {})'
                .format(im_width, im_height, target_width, target_height))
        else:
C
chenguowei01 已提交
285 286 287 288 289 290 291 292
            im = cv2.copyMakeBorder(
                im,
                0,
                pad_height,
                0,
                pad_width,
                cv2.BORDER_CONSTANT,
                value=self.im_padding_value)
C
chenguowei01 已提交
293
            if label is not None:
C
chenguowei01 已提交
294 295 296 297 298 299 300 301
                label = cv2.copyMakeBorder(
                    label,
                    0,
                    pad_height,
                    0,
                    pad_width,
                    cv2.BORDER_CONSTANT,
                    value=self.label_padding_value)
C
chenguowei01 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class RandomPaddingCrop:
    def __init__(self,
                 crop_size=512,
                 im_padding_value=[127.5, 127.5, 127.5],
                 label_padding_value=255):
        if isinstance(crop_size, list) or isinstance(crop_size, tuple):
            if len(crop_size) != 2:
                raise ValueError(
                    'when crop_size is list or tuple, it should include 2 elements, but it is {}'
                    .format(crop_size))
        elif not isinstance(crop_size, int):
            raise TypeError(
                "Type of crop_size is invalid. Must be Integer or List or tuple, now is {}"
                .format(type(crop_size)))
        self.crop_size = crop_size
        self.im_padding_value = im_padding_value
        self.label_padding_value = label_padding_value

    def __call__(self, im, im_info=None, label=None):
        if isinstance(self.crop_size, int):
            crop_width = self.crop_size
            crop_height = self.crop_size
        else:
            crop_width = self.crop_size[0]
            crop_height = self.crop_size[1]

        img_height = im.shape[0]
        img_width = im.shape[1]

        if img_height == crop_height and img_width == crop_width:
            if label is None:
                return (im, im_info)
            else:
                return (im, im_info, label)
        else:
            pad_height = max(crop_height - img_height, 0)
            pad_width = max(crop_width - img_width, 0)
            if (pad_height > 0 or pad_width > 0):
C
chenguowei01 已提交
346 347 348 349 350 351 352 353
                im = cv2.copyMakeBorder(
                    im,
                    0,
                    pad_height,
                    0,
                    pad_width,
                    cv2.BORDER_CONSTANT,
                    value=self.im_padding_value)
C
chenguowei01 已提交
354
                if label is not None:
C
chenguowei01 已提交
355 356 357 358 359 360 361 362
                    label = cv2.copyMakeBorder(
                        label,
                        0,
                        pad_height,
                        0,
                        pad_width,
                        cv2.BORDER_CONSTANT,
                        value=self.label_padding_value)
C
chenguowei01 已提交
363 364 365 366 367 368 369
                img_height = im.shape[0]
                img_width = im.shape[1]

            if crop_height > 0 and crop_width > 0:
                h_off = np.random.randint(img_height - crop_height + 1)
                w_off = np.random.randint(img_width - crop_width + 1)

C
chenguowei01 已提交
370 371
                im = im[h_off:(crop_height + h_off), w_off:(
                    w_off + crop_width), :]
C
chenguowei01 已提交
372
                if label is not None:
C
chenguowei01 已提交
373 374
                    label = label[h_off:(crop_height + h_off), w_off:(
                        w_off + crop_width)]
C
chenguowei01 已提交
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class RandomBlur:
    def __init__(self, prob=0.1):
        self.prob = prob

    def __call__(self, im, im_info=None, label=None):
        if self.prob <= 0:
            n = 0
        elif self.prob >= 1:
            n = 1
        else:
            n = int(1.0 / self.prob)
        if n > 0:
            if np.random.randint(0, n) == 0:
                radius = np.random.randint(3, 10)
                if radius % 2 != 1:
                    radius = radius + 1
                if radius > 9:
                    radius = 9
                im = cv2.GaussianBlur(im, (radius, radius), 0, 0)

        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class RandomRotation:
    def __init__(self,
                 max_rotation=15,
                 im_padding_value=[127.5, 127.5, 127.5],
                 label_padding_value=255):
        self.max_rotation = max_rotation
        self.im_padding_value = im_padding_value
        self.label_padding_value = label_padding_value

    def __call__(self, im, im_info=None, label=None):
        if self.max_rotation > 0:
            (h, w) = im.shape[:2]
            do_rotation = np.random.uniform(-self.max_rotation,
                                            self.max_rotation)
            pc = (w // 2, h // 2)
            r = cv2.getRotationMatrix2D(pc, do_rotation, 1.0)
            cos = np.abs(r[0, 0])
            sin = np.abs(r[0, 1])

            nw = int((h * sin) + (w * cos))
            nh = int((h * cos) + (w * sin))

            (cx, cy) = pc
            r[0, 2] += (nw / 2) - cx
            r[1, 2] += (nh / 2) - cy
            dsize = (nw, nh)
C
chenguowei01 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446
            im = cv2.warpAffine(
                im,
                r,
                dsize=dsize,
                flags=cv2.INTER_LINEAR,
                borderMode=cv2.BORDER_CONSTANT,
                borderValue=self.im_padding_value)
            label = cv2.warpAffine(
                label,
                r,
                dsize=dsize,
                flags=cv2.INTER_NEAREST,
                borderMode=cv2.BORDER_CONSTANT,
                borderValue=self.label_padding_value)
C
chenguowei01 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481

        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class RandomScaleAspect:
    def __init__(self, min_scale=0.5, aspect_ratio=0.33):
        self.min_scale = min_scale
        self.aspect_ratio = aspect_ratio

    def __call__(self, im, im_info=None, label=None):
        if self.min_scale != 0 and self.aspect_ratio != 0:
            img_height = im.shape[0]
            img_width = im.shape[1]
            for i in range(0, 10):
                area = img_height * img_width
                target_area = area * np.random.uniform(self.min_scale, 1.0)
                aspectRatio = np.random.uniform(self.aspect_ratio,
                                                1.0 / self.aspect_ratio)

                dw = int(np.sqrt(target_area * 1.0 * aspectRatio))
                dh = int(np.sqrt(target_area * 1.0 / aspectRatio))
                if (np.random.randint(10) < 5):
                    tmp = dw
                    dw = dh
                    dh = tmp

                if (dh < img_height and dw < img_width):
                    h1 = np.random.randint(0, img_height - dh)
                    w1 = np.random.randint(0, img_width - dw)

                    im = im[h1:(h1 + dh), w1:(w1 + dw), :]
                    label = label[h1:(h1 + dh), w1:(w1 + dw)]
C
chenguowei01 已提交
482 483 484 485 486 487
                    im = cv2.resize(
                        im, (img_width, img_height),
                        interpolation=cv2.INTER_LINEAR)
                    label = cv2.resize(
                        label, (img_width, img_height),
                        interpolation=cv2.INTER_NEAREST)
C
chenguowei01 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
                    break
        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)


class RandomDistort:
    def __init__(self,
                 brightness_range=0.5,
                 brightness_prob=0.5,
                 contrast_range=0.5,
                 contrast_prob=0.5,
                 saturation_range=0.5,
                 saturation_prob=0.5,
                 hue_range=18,
                 hue_prob=0.5):
        self.brightness_range = brightness_range
        self.brightness_prob = brightness_prob
        self.contrast_range = contrast_range
        self.contrast_prob = contrast_prob
        self.saturation_range = saturation_range
        self.saturation_prob = saturation_prob
        self.hue_range = hue_range
        self.hue_prob = hue_prob

    def __call__(self, im, im_info=None, label=None):
        brightness_lower = 1 - self.brightness_range
        brightness_upper = 1 + self.brightness_range
        contrast_lower = 1 - self.contrast_range
        contrast_upper = 1 + self.contrast_range
        saturation_lower = 1 - self.saturation_range
        saturation_upper = 1 + self.saturation_range
        hue_lower = -self.hue_range
        hue_upper = self.hue_range
        ops = [brightness, contrast, saturation, hue]
        random.shuffle(ops)
        params_dict = {
            'brightness': {
                'brightness_lower': brightness_lower,
                'brightness_upper': brightness_upper
            },
            'contrast': {
                'contrast_lower': contrast_lower,
                'contrast_upper': contrast_upper
            },
            'saturation': {
                'saturation_lower': saturation_lower,
                'saturation_upper': saturation_upper
            },
            'hue': {
                'hue_lower': hue_lower,
                'hue_upper': hue_upper
            }
        }
        prob_dict = {
            'brightness': self.brightness_prob,
            'contrast': self.contrast_prob,
            'saturation': self.saturation_prob,
            'hue': self.hue_prob
        }
        im = im.astype('uint8')
        im = Image.fromarray(im)
        for id in range(4):
            params = params_dict[ops[id].__name__]
            prob = prob_dict[ops[id].__name__]
            params['im'] = im
            if np.random.uniform(0, 1) < prob:
                im = ops[id](**params)
        im = np.asarray(im).astype('float32')
        if label is None:
            return (im, im_info)
        else:
            return (im, im_info, label)