mobilenetv2_search_space.py 12.4 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle.fluid as fluid
from paddle.fluid.param_attr import ParamAttr
from paddleslim.nas.search_space.search_space_base import SearchSpaceBase
from paddleslim.nas.search_space.base_layer import conv_bn_layer
from paddleslim.nas.search_space.search_space_registry import SEARCHSPACE
from paddleslim.nas.search_space.utils import check_points

__all__ = ["MobileNetV2SpaceSeg"]


@SEARCHSPACE.register
class MobileNetV2SpaceSeg(SearchSpaceBase):
    def __init__(self, input_size, output_size, block_num, block_mask=None):
        super(MobileNetV2SpaceSeg, self).__init__(input_size, output_size,
                                               block_num, block_mask)
        # self.head_num means the first convolution channel
        self.head_num = np.array([3, 4, 8, 12, 16, 24, 32])  #7
        # self.filter_num1 ~ self.filter_num6 means following convlution channel
        self.filter_num1 = np.array([3, 4, 8, 12, 16, 24, 32, 48])  #8
        self.filter_num2 = np.array([8, 12, 16, 24, 32, 48, 64, 80])  #8
        self.filter_num3 = np.array([16, 24, 32, 48, 64, 80, 96, 128])  #8
        self.filter_num4 = np.array(
            [24, 32, 48, 64, 80, 96, 128, 144, 160, 192])  #10
        self.filter_num5 = np.array(
            [32, 48, 64, 80, 96, 128, 144, 160, 192, 224])  #10
        self.filter_num6 = np.array(
            [64, 80, 96, 128, 144, 160, 192, 224, 256, 320, 384, 512])  #12
        # self.k_size means kernel size
        self.k_size = np.array([3, 5])  #2
        # self.multiply means expansion_factor of each _inverted_residual_unit
        self.multiply = np.array([1, 2, 3, 4, 6])  #5
        # self.repeat means repeat_num _inverted_residual_unit in each _invresi_blocks 
        self.repeat = np.array([1, 2, 3, 4, 5, 6])  #6

    def init_tokens(self):
        """
        The initial token.
        The first one is the index of the first layers' channel in self.head_num,
        each line in the following represent the index of the [expansion_factor, filter_num, repeat_num, kernel_size]
        """
        # original MobileNetV2
        # yapf: disable
        init_token_base =  [4,          # 1, 16, 1
                4, 5, 1, 0, # 6, 24, 2
                4, 4, 2, 0, # 6, 32, 3
                4, 4, 3, 0, # 6, 64, 4
                4, 5, 2, 0, # 6, 96, 3
                4, 7, 2, 0, # 6, 160, 3
                4, 9, 0, 0] # 6, 320, 1
        # yapf: enable

        return init_token_base

    def range_table(self):
        """
        Get range table of current search space, constrains the range of tokens. 
        """
        # head_num + 6 * [multiple(expansion_factor), filter_num, repeat, kernel_size]
        # yapf: disable
        range_table_base =  [len(self.head_num),
                len(self.multiply), len(self.filter_num1), len(self.repeat), len(self.k_size),
                len(self.multiply), len(self.filter_num2), len(self.repeat), len(self.k_size),
                len(self.multiply), len(self.filter_num3), len(self.repeat), len(self.k_size),
                len(self.multiply), len(self.filter_num4), len(self.repeat), len(self.k_size),
                len(self.multiply), len(self.filter_num5), len(self.repeat), len(self.k_size),
                len(self.multiply), len(self.filter_num6), len(self.repeat), len(self.k_size)]
        # yapf: enable
        return range_table_base

    def token2arch(self, tokens=None):
        """
        return net_arch function
        """

        if tokens is None:
            tokens = self.init_tokens()

        self.bottleneck_params_list = []
        self.bottleneck_params_list.append(
            (1, self.head_num[tokens[0]], 1, 1, 3))
        self.bottleneck_params_list.append(
            (self.multiply[tokens[1]], self.filter_num1[tokens[2]],
             self.repeat[tokens[3]], 2, self.k_size[tokens[4]]))
        self.bottleneck_params_list.append(
            (self.multiply[tokens[5]], self.filter_num2[tokens[6]],
             self.repeat[tokens[7]], 2, self.k_size[tokens[8]]))
        self.bottleneck_params_list.append(
            (self.multiply[tokens[9]], self.filter_num3[tokens[10]],
             self.repeat[tokens[11]], 2, self.k_size[tokens[12]]))
        self.bottleneck_params_list.append(
            (self.multiply[tokens[13]], self.filter_num4[tokens[14]],
             self.repeat[tokens[15]], 1, self.k_size[tokens[16]]))
        self.bottleneck_params_list.append(
            (self.multiply[tokens[17]], self.filter_num5[tokens[18]],
             self.repeat[tokens[19]], 2, self.k_size[tokens[20]]))
        self.bottleneck_params_list.append(
            (self.multiply[tokens[21]], self.filter_num6[tokens[22]],
             self.repeat[tokens[23]], 1, self.k_size[tokens[24]]))

        def _modify_bottle_params(output_stride=None):
            if output_stride is not None and output_stride % 2 != 0:
                raise Exception("output stride must to be even number")
            if output_stride is None:
                return
            else:
                stride = 2
                for i, layer_setting in enumerate(self.bottleneck_params_list):
                    t, c, n, s, ks = layer_setting
                    stride = stride * s
                    if stride > output_stride:
                        s = 1
                    self.bottleneck_params_list[i] = (t, c, n, s, ks)

        def net_arch(input,
                     scale=1.0,
                     return_block=None,
                     end_points=None,
                     output_stride=None):
            self.scale = scale
            _modify_bottle_params(output_stride)

            decode_ends = dict()

            def check_points(count, points):
                if points is None:
                    return False
                else:
                    if isinstance(points, list):
                        return (True if count in points else False)
                    else:
                        return (True if count == points else False)

            #conv1
            # all padding is 'SAME' in the conv2d, can compute the actual padding automatic. 
            input = conv_bn_layer(
                input,
                num_filters=int(32 * self.scale),
                filter_size=3,
                stride=2,
                padding='SAME',
                act='relu6',
                name='mobilenetv2_conv1')
            layer_count = 1

            depthwise_output = None
            # bottleneck sequences
            in_c = int(32 * self.scale)
            for i, layer_setting in enumerate(self.bottleneck_params_list):
                t, c, n, s, k = layer_setting
                layer_count += 1
                ### return_block and end_points means block num
                if check_points((layer_count - 1), return_block):
                    decode_ends[layer_count - 1] = depthwise_output

                if check_points((layer_count - 1), end_points):
                    return input, decode_ends
                input, depthwise_output = self._invresi_blocks(
                    input=input,
                    in_c=in_c,
                    t=t,
                    c=int(c * self.scale),
                    n=n,
                    s=s,
L
LielinJiang 已提交
183
                    k=int(k),
L
LielinJiang 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
                    name='mobilenetv2_conv' + str(i))
                in_c = int(c * self.scale)

            ### return_block and end_points means block num
            if check_points(layer_count, return_block):
                decode_ends[layer_count] = depthwise_output

            if check_points(layer_count, end_points):
                return input, decode_ends
            # last conv
            input = conv_bn_layer(
                input=input,
                num_filters=int(1280 * self.scale)
                if self.scale > 1.0 else 1280,
                filter_size=1,
                stride=1,
                padding='SAME',
                act='relu6',
                name='mobilenetv2_conv' + str(i + 1))

            input = fluid.layers.pool2d(
                input=input,
                pool_type='avg',
                global_pooling=True,
                name='mobilenetv2_last_pool')

            return input

        return net_arch

    def _shortcut(self, input, data_residual):
        """Build shortcut layer.
        Args:
            input(Variable): input.
            data_residual(Variable): residual layer.
        Returns:
            Variable, layer output.
        """
        return fluid.layers.elementwise_add(input, data_residual)

    def _inverted_residual_unit(self,
                                input,
                                num_in_filter,
                                num_filters,
                                ifshortcut,
                                stride,
                                filter_size,
                                expansion_factor,
                                reduction_ratio=4,
                                name=None):
        """Build inverted residual unit.
        Args:
            input(Variable), input.
            num_in_filter(int), number of in filters.
            num_filters(int), number of filters.
            ifshortcut(bool), whether using shortcut.
            stride(int), stride.
            filter_size(int), filter size.
            padding(str|int|list), padding.
            expansion_factor(float), expansion factor.
            name(str), name.
        Returns:
            Variable, layers output.
        """
        num_expfilter = int(round(num_in_filter * expansion_factor))
        channel_expand = conv_bn_layer(
            input=input,
            num_filters=num_expfilter,
            filter_size=1,
            stride=1,
            padding='SAME',
            num_groups=1,
            act='relu6',
            name=name + '_expand')

        bottleneck_conv = conv_bn_layer(
            input=channel_expand,
            num_filters=num_expfilter,
            filter_size=filter_size,
            stride=stride,
            padding='SAME',
            num_groups=num_expfilter,
            act='relu6',
            name=name + '_dwise',
            use_cudnn=False)

        depthwise_output = bottleneck_conv

        linear_out = conv_bn_layer(
            input=bottleneck_conv,
            num_filters=num_filters,
            filter_size=1,
            stride=1,
            padding='SAME',
            num_groups=1,
            act=None,
            name=name + '_linear')
        out = linear_out
        if ifshortcut:
            out = self._shortcut(input=input, data_residual=out)
        return out, depthwise_output

    def _invresi_blocks(self, input, in_c, t, c, n, s, k, name=None):
        """Build inverted residual blocks.
        Args:
            input: Variable, input.
            in_c: int, number of in filters.
            t: float, expansion factor.
            c: int, number of filters.
            n: int, number of layers.
            s: int, stride.
            k: int, filter size.
            name: str, name.
        Returns:
            Variable, layers output.
        """
        first_block, depthwise_output = self._inverted_residual_unit(
            input=input,
            num_in_filter=in_c,
            num_filters=c,
            ifshortcut=False,
            stride=s,
            filter_size=k,
            expansion_factor=t,
            name=name + '_1')

        last_residual_block = first_block
        last_c = c

        for i in range(1, n):
            last_residual_block, depthwise_output = self._inverted_residual_unit(
                input=last_residual_block,
                num_in_filter=last_c,
                num_filters=c,
                ifshortcut=True,
                stride=1,
                filter_size=k,
                expansion_factor=t,
                name=name + '_' + str(i + 1))
        return last_residual_block, depthwise_output