ocrnet.py 6.8 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from paddle.fluid.dygraph import Sequential, Conv2D

from dygraph.cvlibs import manager
from dygraph.models.architectures.layer_utils import ConvBnRelu


class SpatialGatherBlock(fluid.dygraph.Layer):
    def forward(self, pixels, regions):
        n, c, h, w = pixels.shape
        _, k, _, _ = regions.shape

        # pixels: from (n, c, h, w) to (n, h*w, c)
        pixels = fluid.layers.reshape(pixels, (n, c, h * w))
        pixels = fluid.layers.transpose(pixels, (0, 2, 1))

        # regions: from (n, k, h, w) to (n, k, h*w)
        regions = fluid.layers.reshape(regions, (n, k, h * w))
        regions = fluid.layers.softmax(regions, axis=2)

        # feats: from (n, k, c) to (n, c, k, 1)
        feats = fluid.layers.matmul(regions, pixels)
        feats = fluid.layers.transpose(feats, (0, 2, 1))
        feats = fluid.layers.unsqueeze(feats, axes=[-1])

        return feats


class SpatialOCRModule(fluid.dygraph.Layer):
    def __init__(self,
                 in_channels,
                 key_channels,
                 out_channels,
                 dropout_rate=0.1):
        super(SpatialOCRModule, self).__init__()

        self.attention_block = ObjectAttentionBlock(in_channels, key_channels)
        self.dropout_rate = dropout_rate
        self.conv1x1 = Conv2D(2 * in_channels, out_channels, 1)

    def forward(self, pixels, regions):
        context = self.attention_block(pixels, regions)
        feats = fluid.layers.concat([context, pixels], axis=1)

        feats = self.conv1x1(feats)
        feats = fluid.layers.dropout(feats, self.dropout_rate)

        return feats


class ObjectAttentionBlock(fluid.dygraph.Layer):
    def __init__(self, in_channels, key_channels):
        super(ObjectAttentionBlock, self).__init__()

        self.in_channels = in_channels
        self.key_channels = key_channels

        self.f_pixel = Sequential(
            ConvBnRelu(in_channels, key_channels, 1),
            ConvBnRelu(key_channels, key_channels, 1))

        self.f_object = Sequential(
            ConvBnRelu(in_channels, key_channels, 1),
            ConvBnRelu(key_channels, key_channels, 1))

        self.f_down = ConvBnRelu(in_channels, key_channels, 1)

        self.f_up = ConvBnRelu(key_channels, in_channels, 1)

    def forward(self, x, proxy):
        n, _, h, w = x.shape

        # query : from (n, c1, h1, w1) to (n, h1*w1, key_channels)
        query = self.f_pixel(x)
        query = fluid.layers.reshape(query, (n, self.key_channels, -1))
        query = fluid.layers.transpose(query, (0, 2, 1))

        # key : from (n, c2, h2, w2) to (n, key_channels, h2*w2)
        key = self.f_object(proxy)
        key = fluid.layers.reshape(key, (n, self.key_channels, -1))

        # value : from (n, c2, h2, w2) to (n, h2*w2, key_channels)
        value = self.f_down(proxy)
        value = fluid.layers.reshape(value, (n, self.key_channels, -1))
        value = fluid.layers.transpose(value, (0, 2, 1))

        # sim_map (n, h1*w1, h2*w2)
        sim_map = fluid.layers.matmul(query, key)
        sim_map = (self.key_channels**-.5) * sim_map
        sim_map = fluid.layers.softmax(sim_map, axis=-1)

        # context from (n, h1*w1, key_channels) to (n , out_channels, h1, w1)
        context = fluid.layers.matmul(sim_map, value)
        context = fluid.layers.transpose(context, (0, 2, 1))
        context = fluid.layers.reshape(context, (n, self.key_channels, h, w))
        context = self.f_up(context)

        return context


@manager.MODELS.add_component
class OCRNet(fluid.dygraph.Layer):
    def __init__(self,
                 num_classes,
                 in_channels,
                 backbone,
                 ocr_mid_channels=512,
                 ocr_key_channels=256,
                 ignore_index=255):
        super(OCRNet, self).__init__()

        self.ignore_index = ignore_index
        self.num_classes = num_classes
        self.EPS = 1e-5

        self.backbone = backbone
        self.spatial_gather = SpatialGatherBlock()
        self.spatial_ocr = SpatialOCRModule(ocr_mid_channels, ocr_key_channels,
                                            ocr_mid_channels)
        self.conv3x3_ocr = ConvBnRelu(
            in_channels, ocr_mid_channels, 3, padding=1)
        self.cls_head = Conv2D(ocr_mid_channels, self.num_classes, 1)

        self.aux_head = Sequential(
            ConvBnRelu(in_channels, in_channels, 3, padding=1),
            Conv2D(in_channels, self.num_classes, 1))

    def forward(self, x, label=None):
        feats = self.backbone(x)

        soft_regions = self.aux_head(feats)
        pixels = self.conv3x3_ocr(feats)

        object_regions = self.spatial_gather(pixels, soft_regions)
        ocr = self.spatial_ocr(pixels, object_regions)

        logit = self.cls_head(ocr)
        logit = fluid.layers.resize_bilinear(logit, x.shape[2:])

        if self.training:
            soft_regions = fluid.layers.resize_bilinear(soft_regions,
                                                        x.shape[2:])
            cls_loss = self._get_loss(logit, label)
            aux_loss = self._get_loss(soft_regions, label)
            return cls_loss + 0.4 * aux_loss

        score_map = fluid.layers.softmax(logit, axis=1)
        score_map = fluid.layers.transpose(score_map, [0, 2, 3, 1])
        pred = fluid.layers.argmax(score_map, axis=3)
        pred = fluid.layers.unsqueeze(pred, axes=[3])
        return pred, score_map

    def _get_loss(self, logit, label):
        """
        compute forward loss of the model

        Args:
            logit (tensor): the logit of model output
            label (tensor): ground truth

        Returns:
            avg_loss (tensor): forward loss
        """
        logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
        label = fluid.layers.transpose(label, [0, 2, 3, 1])
        mask = label != self.ignore_index
        mask = fluid.layers.cast(mask, 'float32')
        loss, probs = fluid.layers.softmax_with_cross_entropy(
            logit,
            label,
            ignore_index=self.ignore_index,
            return_softmax=True,
            axis=-1)

        loss = loss * mask
        avg_loss = fluid.layers.mean(loss) / (
            fluid.layers.mean(mask) + self.EPS)

        label.stop_gradient = True
        mask.stop_gradient = True

        return avg_loss