fast_scnn.py 9.9 KB
Newer Older
L
LielinJiang 已提交
1
# coding: utf8
W
wuyefeilin 已提交
2
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
L
LielinJiang 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from models.libs.model_libs import scope
from models.libs.model_libs import bn, bn_relu, relu, conv_bn_layer
from models.libs.model_libs import conv, avg_pool
from models.libs.model_libs import separate_conv
from utils.config import cfg


W
wuyefeilin 已提交
28 29
def learning_to_downsample(x, dw_channels1=32, dw_channels2=48,
                           out_channels=64):
L
LielinJiang 已提交
30 31
    x = relu(bn(conv(x, dw_channels1, 3, 2)))
    with scope('dsconv1'):
W
wuyefeilin 已提交
32 33
        x = separate_conv(
            x, dw_channels2, stride=2, filter=3, act=fluid.layers.relu)
L
LielinJiang 已提交
34
    with scope('dsconv2'):
W
wuyefeilin 已提交
35 36
        x = separate_conv(
            x, out_channels, stride=2, filter=3, act=fluid.layers.relu)
L
LielinJiang 已提交
37 38 39 40 41 42 43 44 45 46 47 48
    return x


def shortcut(input, data_residual):
    return fluid.layers.elementwise_add(input, data_residual)


def dropout2d(input, prob, is_train=False):
    if not is_train:
        return input
    channels = input.shape[1]
    keep_prob = 1.0 - prob
W
wuyefeilin 已提交
49 50 51
    shape = fluid.layers.shape(input)
    random_tensor = keep_prob + fluid.layers.uniform_random(
        [shape[0], channels, 1, 1], min=0., max=1.)
L
LielinJiang 已提交
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
    binary_tensor = fluid.layers.floor(random_tensor)
    output = input / keep_prob * binary_tensor
    return output


def inverted_residual_unit(input,
                           num_in_filter,
                           num_filters,
                           ifshortcut,
                           stride,
                           filter_size,
                           padding,
                           expansion_factor,
                           name=None):
    num_expfilter = int(round(num_in_filter * expansion_factor))

    channel_expand = conv_bn_layer(
        input=input,
        num_filters=num_expfilter,
        filter_size=1,
        stride=1,
        padding=0,
        num_groups=1,
        if_act=True,
        name=name + '_expand')

    bottleneck_conv = conv_bn_layer(
        input=channel_expand,
        num_filters=num_expfilter,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        num_groups=num_expfilter,
        if_act=True,
        name=name + '_dwise',
        use_cudnn=False)

    depthwise_output = bottleneck_conv

    linear_out = conv_bn_layer(
        input=bottleneck_conv,
        num_filters=num_filters,
        filter_size=1,
        stride=1,
        padding=0,
        num_groups=1,
        if_act=False,
        name=name + '_linear')

    if ifshortcut:
        out = shortcut(input=input, data_residual=linear_out)
        return out, depthwise_output
    else:
        return linear_out, depthwise_output


def inverted_blocks(input, in_c, t, c, n, s, name=None):
    first_block, depthwise_output = inverted_residual_unit(
        input=input,
        num_in_filter=in_c,
        num_filters=c,
        ifshortcut=False,
        stride=s,
        filter_size=3,
        padding=1,
        expansion_factor=t,
        name=name + '_1')

    last_residual_block = first_block
    last_c = c

    for i in range(1, n):
        last_residual_block, depthwise_output = inverted_residual_unit(
            input=last_residual_block,
            num_in_filter=last_c,
            num_filters=c,
            ifshortcut=True,
            stride=1,
            filter_size=3,
            padding=1,
            expansion_factor=t,
            name=name + '_' + str(i + 1))
    return last_residual_block, depthwise_output


def psp_module(input, out_features):

    cat_layers = []
    sizes = (1, 2, 3, 6)
    for size in sizes:
        psp_name = "psp" + str(size)
        with scope(psp_name):
W
wuyefeilin 已提交
144 145 146 147 148 149 150 151 152 153 154
            pool = fluid.layers.adaptive_pool2d(
                input,
                pool_size=[size, size],
                pool_type='avg',
                name=psp_name + '_adapool')
            data = conv(
                pool,
                out_features,
                filter_size=1,
                bias_attr=False,
                name=psp_name + '_conv')
L
LielinJiang 已提交
155
            data_bn = bn(data, act='relu')
W
wuyefeilin 已提交
156 157 158 159 160
            interp = fluid.layers.resize_bilinear(
                data_bn,
                out_shape=input.shape[2:],
                name=psp_name + '_interp',
                align_mode=0)
L
LielinJiang 已提交
161 162 163 164 165 166 167 168 169 170
        cat_layers.append(interp)
    cat_layers = [input] + cat_layers
    out = fluid.layers.concat(cat_layers, axis=1, name='psp_cat')

    return out


class FeatureFusionModule:
    """Feature fusion module"""

W
wuyefeilin 已提交
171 172 173 174 175
    def __init__(self,
                 higher_in_channels,
                 lower_in_channels,
                 out_channels,
                 scale_factor=4):
L
LielinJiang 已提交
176 177 178 179 180 181 182
        self.higher_in_channels = higher_in_channels
        self.lower_in_channels = lower_in_channels
        self.out_channels = out_channels
        self.scale_factor = scale_factor

    def net(self, higher_res_feature, lower_res_feature):
        h, w = higher_res_feature.shape[2:]
W
wuyefeilin 已提交
183 184
        lower_res_feature = fluid.layers.resize_bilinear(
            lower_res_feature, [h, w], align_mode=0)
L
LielinJiang 已提交
185 186

        with scope('dwconv'):
W
wuyefeilin 已提交
187 188 189
            lower_res_feature = relu(
                bn(conv(lower_res_feature, self.out_channels,
                        1)))  #(lower_res_feature)
L
LielinJiang 已提交
190
        with scope('conv_lower_res'):
W
wuyefeilin 已提交
191 192
            lower_res_feature = bn(
                conv(lower_res_feature, self.out_channels, 1, bias_attr=True))
L
LielinJiang 已提交
193
        with scope('conv_higher_res'):
W
wuyefeilin 已提交
194 195
            higher_res_feature = bn(
                conv(higher_res_feature, self.out_channels, 1, bias_attr=True))
L
LielinJiang 已提交
196 197 198 199 200 201 202 203
        out = higher_res_feature + lower_res_feature

        return relu(out)


class GlobalFeatureExtractor():
    """Global feature extractor module"""

W
wuyefeilin 已提交
204 205 206 207 208 209
    def __init__(self,
                 in_channels=64,
                 block_channels=(64, 96, 128),
                 out_channels=128,
                 t=6,
                 num_blocks=(3, 3, 3)):
L
LielinJiang 已提交
210 211 212 213 214 215 216
        self.in_channels = in_channels
        self.block_channels = block_channels
        self.out_channels = out_channels
        self.t = t
        self.num_blocks = num_blocks

    def net(self, x):
W
wuyefeilin 已提交
217 218 219 220 221 222 223 224 225
        x, _ = inverted_blocks(x, self.in_channels, self.t,
                               self.block_channels[0], self.num_blocks[0], 2,
                               'inverted_block_1')
        x, _ = inverted_blocks(x, self.block_channels[0], self.t,
                               self.block_channels[1], self.num_blocks[1], 2,
                               'inverted_block_2')
        x, _ = inverted_blocks(x, self.block_channels[1], self.t,
                               self.block_channels[2], self.num_blocks[2], 1,
                               'inverted_block_3')
L
LielinJiang 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        x = psp_module(x, self.block_channels[2] // 4)
        with scope('out'):
            x = relu(bn(conv(x, self.out_channels, 1)))
        return x


class Classifier:
    """Classifier"""

    def __init__(self, dw_channels, num_classes, stride=1):
        self.dw_channels = dw_channels
        self.num_classes = num_classes
        self.stride = stride

    def net(self, x):
        with scope('dsconv1'):
W
wuyefeilin 已提交
242 243 244 245 246 247
            x = separate_conv(
                x,
                self.dw_channels,
                stride=self.stride,
                filter=3,
                act=fluid.layers.relu)
L
LielinJiang 已提交
248
        with scope('dsconv2'):
W
wuyefeilin 已提交
249 250 251 252 253 254 255 256
            x = separate_conv(
                x,
                self.dw_channels,
                stride=self.stride,
                filter=3,
                act=fluid.layers.relu)

        x = dropout2d(x, 0.1, is_train=cfg.PHASE == 'train')
L
LielinJiang 已提交
257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        x = conv(x, self.num_classes, 1, bias_attr=True)
        return x


def aux_layer(x, num_classes):
    x = relu(bn(conv(x, 32, 3, padding=1)))
    x = dropout2d(x, 0.1, is_train=(cfg.PHASE == 'train'))
    with scope('logit'):
        x = conv(x, num_classes, 1, bias_attr=True)
    return x


def fast_scnn(img, num_classes):
    size = img.shape[2:]
    classifier = Classifier(128, num_classes)

W
wuyefeilin 已提交
273 274
    global_feature_extractor = GlobalFeatureExtractor(64, [64, 96, 128], 128, 6,
                                                      [3, 3, 3])
L
LielinJiang 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
    feature_fusion = FeatureFusionModule(64, 128, 128)

    with scope('learning_to_downsample'):
        higher_res_features = learning_to_downsample(img, 32, 48, 64)
    with scope('global_feature_extractor'):
        lower_res_feature = global_feature_extractor.net(higher_res_features)
    with scope('feature_fusion'):
        x = feature_fusion.net(higher_res_features, lower_res_feature)
    with scope('classifier'):
        logit = classifier.net(x)
        logit = fluid.layers.resize_bilinear(logit, size, align_mode=0)

    if len(cfg.MODEL.MULTI_LOSS_WEIGHT) == 3:
        with scope('aux_layer_higher'):
            higher_logit = aux_layer(higher_res_features, num_classes)
W
wuyefeilin 已提交
290 291
            higher_logit = fluid.layers.resize_bilinear(
                higher_logit, size, align_mode=0)
L
LielinJiang 已提交
292 293
        with scope('aux_layer_lower'):
            lower_logit = aux_layer(lower_res_feature, num_classes)
W
wuyefeilin 已提交
294 295
            lower_logit = fluid.layers.resize_bilinear(
                lower_logit, size, align_mode=0)
L
LielinJiang 已提交
296 297 298 299
        return logit, higher_logit, lower_logit
    elif len(cfg.MODEL.MULTI_LOSS_WEIGHT) == 2:
        with scope('aux_layer_higher'):
            higher_logit = aux_layer(higher_res_features, num_classes)
W
wuyefeilin 已提交
300 301
            higher_logit = fluid.layers.resize_bilinear(
                higher_logit, size, align_mode=0)
L
LielinJiang 已提交
302 303
        return logit, higher_logit

W
wuyefeilin 已提交
304
    return logit