layer_utils.py 4.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
# -*- encoding: utf-8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle import fluid
from paddle.fluid import dygraph
from paddle.fluid.dygraph import Conv2D
from paddle.fluid.dygraph import SyncBatchNorm as BatchNorm
import cv2
import os
import sys


class ConvBnRelu(dygraph.Layer):

    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 using_sep_conv=False,
                 **kwargs):
        
        super(ConvBnRelu, self).__init__()

        if using_sep_conv:
            self.conv = DepthwiseConvBnRelu(num_channels,
                                            num_filters,
                                            filter_size,
                                            **kwargs)
        else:

            self.conv = Conv2D(num_channels,
                                num_filters,
                                filter_size,
                                **kwargs)

        self.batch_norm = BatchNorm(num_filters)

    def forward(self, x):
        x = self.conv(x)
        x = self.batch_norm(x)
        x = fluid.layers.relu(x)
        return x


class ConvBn(dygraph.Layer):
    def __init__(self, num_channels, num_filters, filter_size, **kwargs):
        super(ConvBn, self).__init__()
        self.conv = Conv2D(num_channels,
                           num_filters,
                           filter_size,
                           **kwargs)
        self.batch_norm = BatchNorm(num_filters)

    def forward(self, x):
        x = self.conv(x)
        x = self.batch_norm(x)
        return x


class ConvReluPool(dygraph.Layer):
    def __init__(self, num_channels, num_filters):
        super(ConvReluPool, self).__init__()
        self.conv = Conv2D(num_channels,
                           num_filters,
                           filter_size=3,
                           stride=1,
                           padding=1,
                           dilation=1)

    def forward(self, x):
        x = self.conv(x)
        x = fluid.layers.relu(x)
        x = fluid.layers.pool2d(x, pool_size=2, pool_type="max", pool_stride=2)
        return x


class ConvBnReluUpsample(dygraph.Layer):
    def __init__(self, num_channels, num_filters):
        super(ConvBnReluUpsample, self).__init__()
        self.conv_bn_relu = ConvBnRelu(num_channels, num_filters)

    def forward(self, x, upsample_scale=2):
        x = self.conv_bn_relu(x)
        new_shape = [x.shape[2] * upsample_scale, x.shape[3] * upsample_scale]
        x = fluid.layers.resize_bilinear(x, new_shape)
        return x


class DepthwiseConvBnRelu(dygraph.Layer):
    def __init__(self,
                 num_channels,
                 num_filters,
                 filter_size,
                 **kwargs):
        super(DepthwiseConvBnRelu, self).__init__()
        self.depthwise_conv = ConvBn(num_channels,
                                    num_filters=num_channels,
                                    filter_size=filter_size,
                                    groups=num_channels,
                                    use_cudnn=False,
                                    **kwargs)
        self.piontwise_conv = ConvBnRelu(num_channels,
                                        num_filters,
                                        filter_size=1,
                                        groups=1)

    def forward(self, x):
        x = self.depthwise_conv(x)
        x = self.piontwise_conv(x)
        return x


def compute_loss(logits, label, ignore_index=255):
    mask = label != ignore_index
    mask = fluid.layers.cast(mask, 'float32')
    loss, probs = fluid.layers.softmax_with_cross_entropy(
        logits,
        label,
        ignore_index=ignore_index,
        return_softmax=True,
        axis=1)

    loss = loss * mask
    avg_loss = fluid.layers.mean(loss) / (
            fluid.layers.mean(mask) + 1e-5)

    label.stop_gradient = True
    mask.stop_gradient = True
    return avg_loss