utils.py 8.4 KB
Newer Older
W
wuyefeilin 已提交
1
# coding: utf8
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
L
LutaoChu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import os.path as osp
import numpy as np
import six
import math
from . import logging


def seconds_to_hms(seconds):
    h = math.floor(seconds / 3600)
    m = math.floor((seconds - h * 3600) / 60)
    s = int(seconds - h * 3600 - m * 60)
    hms_str = "{}:{}:{}".format(h, m, s)
    return hms_str


def setting_environ_flags():
    if 'FLAGS_eager_delete_tensor_gb' not in os.environ:
        os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
    if 'FLAGS_allocator_strategy' not in os.environ:
        os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
    if "CUDA_VISIBLE_DEVICES" in os.environ:
        if os.environ["CUDA_VISIBLE_DEVICES"].count("-1") > 0:
            os.environ["CUDA_VISIBLE_DEVICES"] = ""


def get_environ_info():
    setting_environ_flags()
    import paddle.fluid as fluid
    info = dict()
    info['place'] = 'cpu'
    info['num'] = int(os.environ.get('CPU_NUM', 1))
    if os.environ.get('CUDA_VISIBLE_DEVICES', None) != "":
        if hasattr(fluid.core, 'get_cuda_device_count'):
            gpu_num = 0
            try:
                gpu_num = fluid.core.get_cuda_device_count()
            except:
                os.environ['CUDA_VISIBLE_DEVICES'] = ''
                pass
            if gpu_num > 0:
                info['place'] = 'cuda'
                info['num'] = fluid.core.get_cuda_device_count()
    return info


def parse_param_file(param_file, return_shape=True):
    from paddle.fluid.proto.framework_pb2 import VarType
    f = open(param_file, 'rb')
    version = np.fromstring(f.read(4), dtype='int32')
    lod_level = np.fromstring(f.read(8), dtype='int64')
    for i in range(int(lod_level)):
        _size = np.fromstring(f.read(8), dtype='int64')
        _ = f.read(_size)
    version = np.fromstring(f.read(4), dtype='int32')
    tensor_desc = VarType.TensorDesc()
    tensor_desc_size = np.fromstring(f.read(4), dtype='int32')
    tensor_desc.ParseFromString(f.read(int(tensor_desc_size)))
    tensor_shape = tuple(tensor_desc.dims)
    if return_shape:
        f.close()
        return tuple(tensor_desc.dims)
    if tensor_desc.data_type != 5:
        raise Exception(
            "Unexpected data type while parse {}".format(param_file))
    data_size = 4
    for i in range(len(tensor_shape)):
        data_size *= tensor_shape[i]
    weight = np.fromstring(f.read(data_size), dtype='float32')
    f.close()
    return np.reshape(weight, tensor_shape)


def fuse_bn_weights(exe, main_prog, weights_dir):
    import paddle.fluid as fluid
    logging.info("Try to fuse weights of batch_norm...")
    bn_vars = list()
    for block in main_prog.blocks:
        ops = list(block.ops)
        for op in ops:
            if op.type == 'affine_channel':
                scale_name = op.input('Scale')[0]
                bias_name = op.input('Bias')[0]
                prefix = scale_name[:-5]
                mean_name = prefix + 'mean'
                variance_name = prefix + 'variance'
                if not osp.exists(osp.join(
                        weights_dir, mean_name)) or not osp.exists(
                            osp.join(weights_dir, variance_name)):
                    logging.info(
                        "There's no batch_norm weight found to fuse, skip fuse_bn."
                    )
                    return

                bias = block.var(bias_name)
                pretrained_shape = parse_param_file(
                    osp.join(weights_dir, bias_name))
                actual_shape = tuple(bias.shape)
                if pretrained_shape != actual_shape:
                    continue
                bn_vars.append(
                    [scale_name, bias_name, mean_name, variance_name])
    eps = 1e-5
    for names in bn_vars:
        scale_name, bias_name, mean_name, variance_name = names
        scale = parse_param_file(
            osp.join(weights_dir, scale_name), return_shape=False)
        bias = parse_param_file(
            osp.join(weights_dir, bias_name), return_shape=False)
        mean = parse_param_file(
            osp.join(weights_dir, mean_name), return_shape=False)
        variance = parse_param_file(
            osp.join(weights_dir, variance_name), return_shape=False)
        bn_std = np.sqrt(np.add(variance, eps))
        new_scale = np.float32(np.divide(scale, bn_std))
        new_bias = bias - mean * new_scale
        scale_tensor = fluid.global_scope().find_var(scale_name).get_tensor()
        bias_tensor = fluid.global_scope().find_var(bias_name).get_tensor()
        scale_tensor.set(new_scale, exe.place)
        bias_tensor.set(new_bias, exe.place)
    if len(bn_vars) == 0:
        logging.info(
            "There's no batch_norm weight found to fuse, skip fuse_bn.")
    else:
        logging.info("There's {} batch_norm ops been fused.".format(
            len(bn_vars)))


def load_pdparams(exe, main_prog, model_dir):
    import paddle.fluid as fluid
    from paddle.fluid.proto.framework_pb2 import VarType
    from paddle.fluid.framework import Program

    vars_to_load = list()
    import pickle
    with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
        params_dict = pickle.load(f) if six.PY2 else pickle.load(
            f, encoding='latin1')
    unused_vars = list()
    for var in main_prog.list_vars():
        if not isinstance(var, fluid.framework.Parameter):
            continue
        if var.name not in params_dict:
            raise Exception("{} is not in saved model".format(var.name))
        if var.shape != params_dict[var.name].shape:
            unused_vars.append(var.name)
            logging.warning(
                "[SKIP] Shape of pretrained weight {} doesn't match.(Pretrained: {}, Actual: {})"
                .format(var.name, params_dict[var.name].shape, var.shape))
            continue
        vars_to_load.append(var)
        logging.debug("Weight {} will be load".format(var.name))
    for var_name in unused_vars:
        del params_dict[var_name]
    fluid.io.set_program_state(main_prog, params_dict)

    if len(vars_to_load) == 0:
        logging.warning(
            "There is no pretrain weights loaded, maybe you should check you pretrain model!"
        )
    else:
        logging.info("There are {} varaibles in {} are loaded.".format(
            len(vars_to_load), model_dir))


def load_pretrain_weights(exe, main_prog, weights_dir, fuse_bn=False):
    if not osp.exists(weights_dir):
        raise Exception("Path {} not exists.".format(weights_dir))
    if osp.exists(osp.join(weights_dir, "model.pdparams")):
        return load_pdparams(exe, main_prog, weights_dir)
    import paddle.fluid as fluid
    vars_to_load = list()
    for var in main_prog.list_vars():
        if not isinstance(var, fluid.framework.Parameter):
            continue
        if not osp.exists(osp.join(weights_dir, var.name)):
            logging.debug("[SKIP] Pretrained weight {}/{} doesn't exist".format(
                weights_dir, var.name))
            continue
        pretrained_shape = parse_param_file(osp.join(weights_dir, var.name))
        actual_shape = tuple(var.shape)
        if pretrained_shape != actual_shape:
            logging.warning(
                "[SKIP] Shape of pretrained weight {}/{} doesn't match.(Pretrained: {}, Actual: {})"
                .format(weights_dir, var.name, pretrained_shape, actual_shape))
            continue
        vars_to_load.append(var)
        logging.debug("Weight {} will be load".format(var.name))

W
wuyefeilin 已提交
205 206 207
    params_dict = fluid.io.load_program_state(
        weights_dir, var_list=vars_to_load)
    fluid.io.set_program_state(main_prog, params_dict)
L
LutaoChu 已提交
208 209 210 211 212 213 214 215 216
    if len(vars_to_load) == 0:
        logging.warning(
            "There is no pretrain weights loaded, maybe you should check you pretrain model!"
        )
    else:
        logging.info("There are {} varaibles in {} are loaded.".format(
            len(vars_to_load), weights_dir))
    if fuse_bn:
        fuse_bn_weights(exe, main_prog, weights_dir)