unet.py 11.0 KB
Newer Older
L
LutaoChu 已提交
1
# coding: utf8
2
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
L
LutaoChu 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict

import paddle.fluid as fluid
from .libs import scope, name_scope
from .libs import bn, bn_relu, relu
from .libs import conv, max_pool, deconv
from .libs import sigmoid_to_softmax
from .loss import softmax_with_loss
from .loss import dice_loss
from .loss import bce_loss


class UNet(object):
    """实现Unet模型
        `"U-Net: Convolutional Networks for Biomedical Image Segmentation"
        <https://arxiv.org/abs/1505.04597>`

        Args:
            num_classes (int): 类别数
            mode (str): 网络运行模式,根据mode构建网络的输入和返回。
                当mode为'train'时,输入为image(-1, 3, -1, -1)和label (-1, 1, -1, -1) 返回loss。
                当mode为'train'时,输入为image (-1, 3, -1, -1)和label  (-1, 1, -1, -1),返回loss,
                pred (与网络输入label 相同大小的预测结果,值代表相应的类别),label,mask(非忽略值的mask,
                与label相同大小,bool类型)。
                当mode为'test'时,输入为image(-1, 3, -1, -1)返回pred (-1, 1, -1, -1)和
                logit (-1, num_classes, -1, -1) 通道维上代表每一类的概率值。
            upsample_mode (str): UNet decode时采用的上采样方式,取值为'bilinear'时利用双线行差值进行上菜样,
                当输入其他选项时则利用反卷积进行上菜样,默认为'bilinear'。
            use_bce_loss (bool): 是否使用bce loss作为网络的损失函数,只能用于两类分割。可与dice loss同时使用。
            use_dice_loss (bool): 是否使用dice loss作为网络的损失函数,只能用于两类分割,可与bce loss同时使用。
                当use_bce_loss和use_dice_loss都为False时,使用交叉熵损失函数。
            class_weight (list/str): 交叉熵损失函数各类损失的权重。当class_weight为list的时候,长度应为
                num_classes。当class_weight为str时, weight.lower()应为'dynamic',这时会根据每一轮各类像素的比重
                自行计算相应的权重,每一类的权重为:每类的比例 * num_classes。class_weight取默认值None是,各类的权重1,
                即平时使用的交叉熵损失函数。
            ignore_index (int): label上忽略的值,label为ignore_index的像素不参与损失函数的计算。

        Raises:
            ValueError: use_bce_loss或use_dice_loss为真且num_calsses > 2。
            ValueError: class_weight为list, 但长度不等于num_class。
                class_weight为str, 但class_weight.low()不等于dynamic。
            TypeError: class_weight不为None时,其类型不是list或str。
        """

    def __init__(self,
                 num_classes,
                 mode='train',
                 upsample_mode='bilinear',
                 input_channel=3,
                 use_bce_loss=False,
                 use_dice_loss=False,
                 class_weight=None,
                 ignore_index=255):
        # dice_loss或bce_loss只适用两类分割中
        if num_classes > 2 and (use_bce_loss or use_dice_loss):
            raise Exception(
                "dice loss and bce loss is only applicable to binary classfication"
            )

        if class_weight is not None:
            if isinstance(class_weight, list):
                if len(class_weight) != num_classes:
                    raise ValueError(
                        "Length of class_weight should be equal to number of classes"
                    )
            elif isinstance(class_weight, str):
                if class_weight.lower() != 'dynamic':
                    raise ValueError(
                        "if class_weight is string, must be dynamic!")
            else:
                raise TypeError(
                    'Expect class_weight is a list or string but receive {}'.
                    format(type(class_weight)))
        self.num_classes = num_classes
        self.mode = mode
        self.upsample_mode = upsample_mode
        self.input_channel = input_channel
        self.use_bce_loss = use_bce_loss
        self.use_dice_loss = use_dice_loss
        self.class_weight = class_weight
        self.ignore_index = ignore_index

    def _double_conv(self, data, out_ch):
        param_attr = fluid.ParamAttr(
            name='weights',
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0),
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.33))
        with scope("conv0"):
            data = bn_relu(
                conv(
                    data, out_ch, 3, stride=1, padding=1,
                    param_attr=param_attr))
        with scope("conv1"):
            data = bn_relu(
                conv(
                    data, out_ch, 3, stride=1, padding=1,
                    param_attr=param_attr))
        return data

    def _down(self, data, out_ch):
        # 下采样:max_pool + 2个卷积
        with scope("down"):
            data = max_pool(data, 2, 2, 0)
            data = self._double_conv(data, out_ch)
        return data

    def _up(self, data, short_cut, out_ch):
        # 上采样:data上采样(resize或deconv), 并与short_cut concat
        param_attr = fluid.ParamAttr(
            name='weights',
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0),
            initializer=fluid.initializer.XavierInitializer(),
        )
        with scope("up"):
            if self.upsample_mode == 'bilinear':
                short_cut_shape = fluid.layers.shape(short_cut)
                data = fluid.layers.resize_bilinear(data, short_cut_shape[2:])
            else:
                data = deconv(
                    data,
                    out_ch // 2,
                    filter_size=2,
                    stride=2,
                    padding=0,
                    param_attr=param_attr)
            data = fluid.layers.concat([data, short_cut], axis=1)
            data = self._double_conv(data, out_ch)
        return data

    def _encode(self, data):
        # 编码器设置
        short_cuts = []
        with scope("encode"):
            with scope("block1"):
                data = self._double_conv(data, 64)
                short_cuts.append(data)
            with scope("block2"):
                data = self._down(data, 128)
                short_cuts.append(data)
            with scope("block3"):
                data = self._down(data, 256)
                short_cuts.append(data)
            with scope("block4"):
                data = self._down(data, 512)
                short_cuts.append(data)
            with scope("block5"):
                data = self._down(data, 512)
        return data, short_cuts

    def _decode(self, data, short_cuts):
        # 解码器设置,与编码器对称
        with scope("decode"):
            with scope("decode1"):
                data = self._up(data, short_cuts[3], 256)
            with scope("decode2"):
                data = self._up(data, short_cuts[2], 128)
            with scope("decode3"):
                data = self._up(data, short_cuts[1], 64)
            with scope("decode4"):
                data = self._up(data, short_cuts[0], 64)
        return data

    def _get_logit(self, data, num_classes):
        # 根据类别数设置最后一个卷积层输出
        param_attr = fluid.ParamAttr(
            name='weights',
            regularizer=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0),
            initializer=fluid.initializer.TruncatedNormal(loc=0.0, scale=0.01))
        with scope("logit"):
            data = conv(
                data,
                num_classes,
                3,
                stride=1,
                padding=1,
                param_attr=param_attr)
        return data

    def _get_loss(self, logit, label, mask):
        avg_loss = 0
        if not (self.use_dice_loss or self.use_bce_loss):
            avg_loss += softmax_with_loss(
                logit,
                label,
                mask,
                num_classes=self.num_classes,
                weight=self.class_weight,
                ignore_index=self.ignore_index)
        else:
            if self.use_dice_loss:
                avg_loss += dice_loss(logit, label, mask)
            if self.use_bce_loss:
                avg_loss += bce_loss(
                    logit, label, mask, ignore_index=self.ignore_index)

        return avg_loss

    def generate_inputs(self):
        inputs = OrderedDict()
        inputs['image'] = fluid.data(
            dtype='float32',
            shape=[None, self.input_channel, None, None],
            name='image')
        if self.mode == 'train':
            inputs['label'] = fluid.data(
                dtype='int32', shape=[None, 1, None, None], name='label')
        elif self.mode == 'eval':
            inputs['label'] = fluid.data(
                dtype='int32', shape=[None, 1, None, None], name='label')
        return inputs

    def build_net(self, inputs):
        # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1
        if self.use_dice_loss or self.use_bce_loss:
            self.num_classes = 1

        image = inputs['image']
        encode_data, short_cuts = self._encode(image)
        decode_data = self._decode(encode_data, short_cuts)
        logit = self._get_logit(decode_data, self.num_classes)

        if self.num_classes == 1:
            out = sigmoid_to_softmax(logit)
            out = fluid.layers.transpose(out, [0, 2, 3, 1])
        else:
            out = fluid.layers.transpose(logit, [0, 2, 3, 1])

        pred = fluid.layers.argmax(out, axis=3)
        pred = fluid.layers.unsqueeze(pred, axes=[3])

        if self.mode == 'train':
            label = inputs['label']
            mask = label != self.ignore_index
            return self._get_loss(logit, label, mask)

        elif self.mode == 'eval':
            label = inputs['label']
            mask = label != self.ignore_index
            loss = self._get_loss(logit, label, mask)
            return loss, pred, label, mask
        else:
            if self.num_classes == 1:
                logit = sigmoid_to_softmax(logit)
            else:
                logit = fluid.layers.softmax(logit, axis=1)
            return pred, logit