val.py 2.1 KB
Newer Older
W
wuyefeilin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# coding: utf8
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
import argparse
from datasets.dataset import Dataset
import transforms
import models


def parse_args():
    parser = argparse.ArgumentParser(description='HumanSeg training')
    parser.add_argument(
        '--model_dir',
        dest='model_dir',
        help='Model path for evaluating',
        type=str,
        default='output/best_model')
    parser.add_argument(
        '--data_dir',
        dest='data_dir',
        help='The root directory of dataset',
        type=str)
    parser.add_argument(
        '--val_list',
        dest='val_list',
        help='Val list file of dataset',
        type=str,
        default=None)
    parser.add_argument(
        '--batch_size',
        dest='batch_size',
        help='Mini batch size',
        type=int,
        default=128)
C
chenguowei01 已提交
47 48 49 50 51 52 53
    parser.add_argument(
        "--image_shape",
        dest="image_shape",
        help="The image shape for net inputs.",
        nargs=2,
        default=[192, 192],
        type=int)
54 55 56 57 58
    return parser.parse_args()


def evaluate(args):
    eval_transforms = transforms.Compose(
C
chenguowei01 已提交
59
        [transforms.Resize(args.image_shape),
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
         transforms.Normalize()])

    eval_dataset = Dataset(
        data_dir=args.data_dir,
        file_list=args.val_list,
        transforms=eval_transforms,
        num_workers='auto',
        buffer_size=100,
        parallel_method='thread',
        shuffle=False)

    model = models.load_model(args.model_dir)
    model.evaluate(eval_dataset, args.batch_size)


if __name__ == '__main__':
    args = parse_args()

    evaluate(args)