gcnet.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import paddle
import paddle.nn.functional as F
from paddle import nn
from paddleseg.cvlibs import manager
M
michaelowenliu 已提交
21
from paddleseg.models.common import layer_libs
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
from paddleseg.utils import utils


@manager.MODELS.add_component
class GCNet(nn.Layer):
    """
    The GCNet implementation based on PaddlePaddle.

    The orginal artile refers to 
        Cao, Yue, et al. "GCnet: Non-local networks meet squeeze-excitation networks and beyond."
        (https://arxiv.org/pdf/1904.11492.pdf)

    Args:

        num_classes (int): the unique number of target classes.

        backbone (Paddle.nn.Layer): backbone network, currently support Resnet50/101.

        model_pretrained (str): the path of pretrained model. Defaullt to None.

        backbone_indices (tuple): two values in the tuple indicte the indices of output of backbone.
                        the first index will be taken as a deep-supervision feature in auxiliary layer;
                        the second one will be taken as input of GlobalContextBlock. Usually backbone 
                        consists of four downsampling stage, and return an output of each stage, so we 
                        set default (2, 3), which means taking feature map of the third stage (res4b22) 
                        and the fourth stage (res5c) in backbone.

        backbone_channels (tuple): the same length with "backbone_indices". It indicates the channels of corresponding index.

        gc_channels (int): input channels to Global Context Block. Default to 512.

        ratio (float): it indictes the ratio of attention channels and gc_channels. Default to 1/4.

        enable_auxiliary_loss (bool): a bool values indictes whether adding auxiliary loss. Default to True.

    """

    def __init__(self,
                 num_classes,
                 backbone,
                 model_pretrained=None,
                 backbone_indices=(2, 3),
                 backbone_channels=(1024, 2048),
                 gc_channels=512,
                 ratio=1 / 4,
                 enable_auxiliary_loss=True,
                 pretrained_model=None):

        super(GCNet, self).__init__()

        self.backbone = backbone

        in_channels = backbone_channels[1]
M
michaelowenliu 已提交
75
        self.conv_bn_relu1 = layer_libs.ConvBnRelu(
76 77 78 79 80 81 82
            in_channels=in_channels,
            out_channels=gc_channels,
            kernel_size=3,
            padding=1)

        self.gc_block = GlobalContextBlock(in_channels=gc_channels, ratio=ratio)

M
michaelowenliu 已提交
83
        self.conv_bn_relu2 = layer_libs.ConvBnRelu(
84 85 86 87 88
            in_channels=gc_channels,
            out_channels=gc_channels,
            kernel_size=3,
            padding=1)

M
michaelowenliu 已提交
89
        self.conv_bn_relu3 = layer_libs.ConvBnRelu(
90 91 92 93 94 95 96 97 98
            in_channels=in_channels + gc_channels,
            out_channels=gc_channels,
            kernel_size=3,
            padding=1)

        self.conv = nn.Conv2d(
            in_channels=gc_channels, out_channels=num_classes, kernel_size=1)

        if enable_auxiliary_loss:
M
michaelowenliu 已提交
99
            self.auxlayer = layer_libs.AuxLayer(
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
                in_channels=backbone_channels[0],
                inter_channels=backbone_channels[0] // 4,
                out_channels=num_classes)

        self.backbone_indices = backbone_indices
        self.enable_auxiliary_loss = enable_auxiliary_loss

        self.init_weight(model_pretrained)

    def forward(self, input, label=None):

        logit_list = []
        _, feat_list = self.backbone(input)
        x = feat_list[self.backbone_indices[1]]

        output = self.conv_bn_relu1(x)
        output = self.gc_block(output)
        output = self.conv_bn_relu2(output)

        output = paddle.concat([x, output], axis=1)
        output = self.conv_bn_relu3(output)

        output = F.dropout(output, p=0.1)  # dropout_prob
        logit = self.conv(output)
        logit = F.resize_bilinear(logit, input.shape[2:])
        logit_list.append(logit)

        if self.enable_auxiliary_loss:
            low_level_feat = feat_list[self.backbone_indices[0]]
            auxiliary_logit = self.auxlayer(low_level_feat)
            auxiliary_logit = F.resize_bilinear(auxiliary_logit,
                                                input.shape[2:])
            logit_list.append(auxiliary_logit)

        return logit_list

    def init_weight(self, pretrained_model=None):
        """
        Initialize the parameters of model parts.
        Args:
            pretrained_model ([str], optional): the path of pretrained model. Defaults to None.
        """
        if pretrained_model is not None:
            if os.path.exists(pretrained_model):
                utils.load_pretrained_model(self, pretrained_model)
            else:
                raise Exception('Pretrained model is not found: {}'.format(
                    pretrained_model))


class GlobalContextBlock(nn.Layer):
    """
    Global Context Block implementation.

    Args:
        in_channels (int): input channels of Global Context Block
        ratio (float): the channels of attention map.
    """

    def __init__(self, in_channels, ratio):
        super(GlobalContextBlock, self).__init__()

        self.conv_mask = nn.Conv2d(
            in_channels=in_channels, out_channels=1, kernel_size=1)

M
michaelowenliu 已提交
165 166
        self.softmax = nn.Softmax(axis=2)
        
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
        inter_channels = int(in_channels * ratio)
        self.channel_add_conv = nn.Sequential(
            nn.Conv2d(
                in_channels=in_channels,
                out_channels=inter_channels,
                kernel_size=1),
            nn.LayerNorm(normalized_shape=[inter_channels, 1, 1]), nn.ReLU(),
            nn.Conv2d(
                in_channels=inter_channels,
                out_channels=in_channels,
                kernel_size=1))

    def global_context_block(self, x):
        batch, channel, height, width = x.shape

        # [N, C, H * W]
        input_x = paddle.reshape(x, shape=[batch, channel, height * width])
        # [N, 1, C, H * W]
        input_x = paddle.unsqueeze(input_x, axis=1)
        # [N, 1, H, W]
        context_mask = self.conv_mask(x)
        # [N, 1, H * W]
        context_mask = paddle.reshape(
            context_mask, shape=[batch, 1, height * width])
M
michaelowenliu 已提交
191
        context_mask = self.softmax(context_mask)
192 193 194 195 196 197 198 199 200 201 202 203 204 205
        # [N, 1, H * W, 1]
        context_mask = paddle.unsqueeze(context_mask, axis=-1)
        # [N, 1, C, 1]
        context = paddle.matmul(input_x, context_mask)
        # [N, C, 1, 1]
        context = paddle.reshape(context, shape=[batch, channel, 1, 1])

        return context

    def forward(self, x):
        context = self.global_context_block(x)
        channel_add_term = self.channel_add_conv(context)
        out = x + channel_add_term
        return out