train_nas.py 13.2 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
# GPU memory garbage collection optimization flags
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"

import sys

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
SEG_PATH = os.path.join(LOCAL_PATH, "../../", "pdseg")
sys.path.append(SEG_PATH)

import argparse
import pprint
import random
import shutil
import functools

import paddle
import numpy as np
import paddle.fluid as fluid

from utils.config import cfg
from utils.timer import Timer, calculate_eta
from metrics import ConfusionMatrix
from reader import SegDataset
from model_builder import build_model
from model_builder import ModelPhase
from model_builder import parse_shape_from_file
from eval_nas import evaluate
from vis import visualize
from utils import dist_utils
W
wuyefeilin 已提交
50
from utils.load_model_utils import load_pretrained_weights
L
LielinJiang 已提交
51 52 53 54 55 56 57

from mobilenetv2_search_space import MobileNetV2SpaceSeg
from paddleslim.nas.search_space.search_space_factory import SearchSpaceFactory
from paddleslim.analysis import flops
from paddleslim.nas.sa_nas import SANAS
from paddleslim.nas import search_space

58

L
LielinJiang 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
def parse_args():
    parser = argparse.ArgumentParser(description='PaddleSeg training')
    parser.add_argument(
        '--cfg',
        dest='cfg_file',
        help='Config file for training (and optionally testing)',
        default=None,
        type=str)
    parser.add_argument(
        '--use_gpu',
        dest='use_gpu',
        help='Use gpu or cpu',
        action='store_true',
        default=False)
    parser.add_argument(
        '--use_mpio',
        dest='use_mpio',
        help='Use multiprocess I/O or not',
        action='store_true',
        default=False)
    parser.add_argument(
        '--log_steps',
        dest='log_steps',
        help='Display logging information at every log_steps',
        default=10,
        type=int)
    parser.add_argument(
        '--debug',
        dest='debug',
        help='debug mode, display detail information of training',
        action='store_true')
    parser.add_argument(
91 92 93
        '--use_vdl',
        dest='use_vdl',
        help='whether to record the data during training to VisualDL',
L
LielinJiang 已提交
94 95
        action='store_true')
    parser.add_argument(
96 97 98
        '--vdl_log_dir',
        dest='vdl_log_dir',
        help='VisualDL logging directory',
L
LielinJiang 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        default=None,
        type=str)
    parser.add_argument(
        '--do_eval',
        dest='do_eval',
        help='Evaluation models result on every new checkpoint',
        action='store_true')
    parser.add_argument(
        'opts',
        help='See utils/config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    parser.add_argument(
        '--enable_ce',
        dest='enable_ce',
        help='If set True, enable continuous evaluation job.'
        'This flag is only used for internal test.',
        action='store_true')
    return parser.parse_args()


W
wuyefeilin 已提交
120
def save_checkpoint(program, ckpt_name):
L
LielinJiang 已提交
121 122 123 124 125 126 127 128
    """
    Save checkpoint for evaluation or resume training
    """
    ckpt_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, str(ckpt_name))
    print("Save model checkpoint to {}".format(ckpt_dir))
    if not os.path.isdir(ckpt_dir):
        os.makedirs(ckpt_dir)

W
wuyefeilin 已提交
129
    fluid.save(program, os.path.join(ckpt_dir, 'model'))
L
LielinJiang 已提交
130 131 132 133 134 135

    return ckpt_dir


def load_checkpoint(exe, program):
    """
W
wuyefeilin 已提交
136
    Load checkpoiont for resuming training
L
LielinJiang 已提交
137 138
    """
    model_path = cfg.TRAIN.RESUME_MODEL_DIR
W
wuyefeilin 已提交
139 140 141 142 143 144
    print('Resume model training from:', model_path)
    if not os.path.exists(model_path):
        raise ValueError(
            "TRAIN.PRETRAIN_MODEL {} not exist!".format(model_path))
    fluid.load(program, os.path.join(model_path, 'model'), exe)

L
LielinJiang 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
    # Check is path ended by path spearator
    if model_path[-1] == os.sep:
        model_path = model_path[0:-1]
    epoch_name = os.path.basename(model_path)
    # If resume model is final model
    if epoch_name == 'final':
        begin_epoch = cfg.SOLVER.NUM_EPOCHS
    # If resume model path is end of digit, restore epoch status
    elif epoch_name.isdigit():
        epoch = int(epoch_name)
        begin_epoch = epoch + 1
    else:
        raise ValueError("Resume model path is not valid!")
    print("Model checkpoint loaded successfully!")
    return begin_epoch


def update_best_model(ckpt_dir):
    best_model_dir = os.path.join(cfg.TRAIN.MODEL_SAVE_DIR, 'best_model')
    if os.path.exists(best_model_dir):
        shutil.rmtree(best_model_dir)
    shutil.copytree(ckpt_dir, best_model_dir)


def print_info(*msg):
    if cfg.TRAINER_ID == 0:
        print(*msg)


def train(cfg):
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    if args.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
    drop_last = True

    dataset = SegDataset(
        file_list=cfg.DATASET.TRAIN_FILE_LIST,
        mode=ModelPhase.TRAIN,
        shuffle=True,
        data_dir=cfg.DATASET.DATA_DIR)

    def data_generator():
        if args.use_mpio:
            data_gen = dataset.multiprocess_generator(
                num_processes=cfg.DATALOADER.NUM_WORKERS,
                max_queue_size=cfg.DATALOADER.BUF_SIZE)
        else:
            data_gen = dataset.generator()

        batch_data = []
        for b in data_gen:
            batch_data.append(b)
            if len(batch_data) == (cfg.BATCH_SIZE // cfg.NUM_TRAINERS):
                for item in batch_data:
                    yield item[0], item[1], item[2]
                batch_data = []
        # If use sync batch norm strategy, drop last batch if number of samples
        # in batch_data is less then cfg.BATCH_SIZE to avoid NCCL hang issues
        if not cfg.TRAIN.SYNC_BATCH_NORM:
            for item in batch_data:
                yield item[0], item[1], item[2]

    # Get device environment
    gpu_id = int(os.environ.get('FLAGS_selected_gpus', 0))
    place = fluid.CUDAPlace(gpu_id) if args.use_gpu else fluid.CPUPlace()
    places = fluid.cuda_places() if args.use_gpu else fluid.cpu_places()

    # Get number of GPU
    dev_count = cfg.NUM_TRAINERS if cfg.NUM_TRAINERS > 1 else len(places)
    print_info("#Device count: {}".format(dev_count))

    # Make sure BATCH_SIZE can divided by GPU cards
    assert cfg.BATCH_SIZE % dev_count == 0, (
        'BATCH_SIZE:{} not divisble by number of GPUs:{}'.format(
            cfg.BATCH_SIZE, dev_count))
    # If use multi-gpu training mode, batch data will allocated to each GPU evenly
    batch_size_per_dev = cfg.BATCH_SIZE // dev_count
    print_info("batch_size_per_dev: {}".format(batch_size_per_dev))

    config_info = {'input_size': 769, 'output_size': 1, 'block_num': 7}
    config = ([(cfg.SLIM.NAS_SPACE_NAME, config_info)])
    factory = SearchSpaceFactory()
    space = factory.get_search_space(config)

    port = cfg.SLIM.NAS_PORT
    server_address = (cfg.SLIM.NAS_ADDRESS, port)
233 234 235 236 237
    sa_nas = SANAS(
        config,
        server_addr=server_address,
        search_steps=cfg.SLIM.NAS_SEARCH_STEPS,
        is_server=cfg.SLIM.NAS_IS_SERVER)
L
LielinJiang 已提交
238 239 240 241 242 243
    for step in range(cfg.SLIM.NAS_SEARCH_STEPS):
        arch = sa_nas.next_archs()[0]

        start_prog = fluid.Program()
        train_prog = fluid.Program()

244
        data_loader, avg_loss, lr, pred, grts, masks = build_model(
L
LielinJiang 已提交
245 246 247 248 249
            train_prog, start_prog, arch=arch, phase=ModelPhase.TRAIN)

        cur_flops = flops(train_prog)
        print('current step:', step, 'flops:', cur_flops)

250
        data_loader.set_sample_generator(
L
LielinJiang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263
            data_generator, batch_size=batch_size_per_dev, drop_last=drop_last)

        exe = fluid.Executor(place)
        exe.run(start_prog)

        exec_strategy = fluid.ExecutionStrategy()
        # Clear temporary variables every 100 iteration
        if args.use_gpu:
            exec_strategy.num_threads = fluid.core.get_cuda_device_count()
        exec_strategy.num_iteration_per_drop_scope = 100
        build_strategy = fluid.BuildStrategy()

        if cfg.NUM_TRAINERS > 1 and args.use_gpu:
264 265
            dist_utils.prepare_for_multi_process(exe, build_strategy,
                                                 train_prog)
L
LielinJiang 已提交
266 267 268 269 270 271 272 273 274 275 276
            exec_strategy.num_threads = 1

        if cfg.TRAIN.SYNC_BATCH_NORM and args.use_gpu:
            if dev_count > 1:
                # Apply sync batch norm strategy
                print_info("Sync BatchNorm strategy is effective.")
                build_strategy.sync_batch_norm = True
            else:
                print_info(
                    "Sync BatchNorm strategy will not be effective if GPU device"
                    " count <= 1")
277 278 279 280 281
        compiled_train_prog = fluid.CompiledProgram(
            train_prog).with_data_parallel(
                loss_name=avg_loss.name,
                exec_strategy=exec_strategy,
                build_strategy=build_strategy)
L
LielinJiang 已提交
282 283 284 285 286 287 288

        # Resume training
        begin_epoch = cfg.SOLVER.BEGIN_EPOCH
        if cfg.TRAIN.RESUME_MODEL_DIR:
            begin_epoch = load_checkpoint(exe, train_prog)
        # Load pretrained model
        elif os.path.exists(cfg.TRAIN.PRETRAINED_MODEL_DIR):
W
wuyefeilin 已提交
289 290
            load_pretrained_weights(exe, train_prog,
                                    cfg.TRAIN.PRETRAINED_MODEL_DIR)
L
LielinJiang 已提交
291 292 293
        else:
            print_info(
                'Pretrained model dir {} not exists, training from scratch...'.
294
                format(cfg.TRAIN.PRETRAINED_MODEL_DIR))
L
LielinJiang 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308

        fetch_list = [avg_loss.name, lr.name]

        global_step = 0
        all_step = cfg.DATASET.TRAIN_TOTAL_IMAGES // cfg.BATCH_SIZE
        if cfg.DATASET.TRAIN_TOTAL_IMAGES % cfg.BATCH_SIZE and drop_last != True:
            all_step += 1
        all_step *= (cfg.SOLVER.NUM_EPOCHS - begin_epoch + 1)

        avg_loss = 0.0
        timer = Timer()
        timer.start()
        if begin_epoch > cfg.SOLVER.NUM_EPOCHS:
            raise ValueError(
309 310
                ("begin epoch[{}] is larger than cfg.SOLVER.NUM_EPOCHS[{}]"
                 ).format(begin_epoch, cfg.SOLVER.NUM_EPOCHS))
L
LielinJiang 已提交
311 312 313 314 315 316 317 318

        if args.use_mpio:
            print_info("Use multiprocess reader")
        else:
            print_info("Use multi-thread reader")

        best_miou = 0.0
        for epoch in range(begin_epoch, cfg.SOLVER.NUM_EPOCHS + 1):
319
            data_loader.start()
L
LielinJiang 已提交
320 321 322 323 324 325 326 327 328 329 330 331 332
            while True:
                try:
                    loss, lr = exe.run(
                        program=compiled_train_prog,
                        fetch_list=fetch_list,
                        return_numpy=True)
                    avg_loss += np.mean(np.array(loss))
                    global_step += 1

                    if global_step % args.log_steps == 0 and cfg.TRAINER_ID == 0:
                        avg_loss /= args.log_steps
                        speed = args.log_steps / timer.elapsed_time()
                        print((
333 334 335
                            "epoch={} step={} lr={:.5f} loss={:.4f} step/sec={:.3f} | ETA {}"
                        ).format(epoch, global_step, lr[0], avg_loss, speed,
                                 calculate_eta(all_step - global_step, speed)))
L
LielinJiang 已提交
336 337 338 339 340 341

                        sys.stdout.flush()
                        avg_loss = 0.0
                        timer.restart()

                except fluid.core.EOFException:
342
                    data_loader.reset()
L
LielinJiang 已提交
343 344 345 346
                    break
                except Exception as e:
                    print(e)
            if epoch > cfg.SLIM.NAS_START_EVAL_EPOCH:
W
wuyefeilin 已提交
347
                ckpt_dir = save_checkpoint(train_prog, '{}_tmp'.format(port))
L
LielinJiang 已提交
348 349 350 351 352 353 354
                _, mean_iou, _, mean_acc = evaluate(
                    cfg=cfg,
                    arch=arch,
                    ckpt_dir=ckpt_dir,
                    use_gpu=args.use_gpu,
                    use_mpio=args.use_mpio)
                if best_miou < mean_iou:
355 356
                    print('search step {}, epoch {} best iou {}'.format(
                        step, epoch, mean_iou))
L
LielinJiang 已提交
357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
                    best_miou = mean_iou

        sa_nas.reward(float(best_miou))


def main(args):
    if args.cfg_file is not None:
        cfg.update_from_file(args.cfg_file)
    if args.opts:
        cfg.update_from_list(args.opts)
    if args.enable_ce:
        random.seed(0)
        np.random.seed(0)

    cfg.TRAINER_ID = int(os.getenv("PADDLE_TRAINER_ID", 0))
    cfg.NUM_TRAINERS = int(os.environ.get('PADDLE_TRAINERS_NUM', 1))

    cfg.check_and_infer()
    print_info(pprint.pformat(cfg))
    train(cfg)


if __name__ == '__main__':
    args = parse_args()
    if fluid.core.is_compiled_with_cuda() != True and args.use_gpu == True:
        print(
            "You can not set use_gpu = True in the model because you are using paddlepaddle-cpu."
        )
        print(
            "Please: 1. Install paddlepaddle-gpu to run your models on GPU or 2. Set use_gpu=False to run models on CPU."
        )
        sys.exit(1)
    main(args)