model_builder.py 11.6 KB
Newer Older
L
LielinJiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import struct

import paddle.fluid as fluid
import numpy as np
from paddle.fluid.proto.framework_pb2 import VarType

import solver
from utils.config import cfg
from loss import multi_softmax_with_loss
from loss import multi_dice_loss
from loss import multi_bce_loss
import deeplab


class ModelPhase(object):
    """
    Standard name for model phase in PaddleSeg

    The following standard keys are defined:
    * `TRAIN`: training mode.
    * `EVAL`: testing/evaluation mode.
    * `PREDICT`: prediction/inference mode.
    * `VISUAL` : visualization mode
    """

    TRAIN = 'train'
    EVAL = 'eval'
    PREDICT = 'predict'
    VISUAL = 'visual'

    @staticmethod
    def is_train(phase):
        return phase == ModelPhase.TRAIN

    @staticmethod
    def is_predict(phase):
        return phase == ModelPhase.PREDICT

    @staticmethod
    def is_eval(phase):
        return phase == ModelPhase.EVAL

    @staticmethod
    def is_visual(phase):
        return phase == ModelPhase.VISUAL

    @staticmethod
    def is_valid_phase(phase):
        """ Check valid phase """
        if ModelPhase.is_train(phase) or ModelPhase.is_predict(phase) \
                or ModelPhase.is_eval(phase) or ModelPhase.is_visual(phase):
            return True

        return False


def seg_model(image, class_num, arch):
    model_name = cfg.MODEL.MODEL_NAME
    if model_name == 'deeplabv3p':
        logits = deeplab.deeplabv3p_nas(image, class_num, arch)
    else:
77
        raise Exception("unknow model name, only support deeplabv3p")
L
LielinJiang 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
    return logits


def softmax(logit):
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.softmax(logit)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit


def sigmoid_to_softmax(logit):
    """
    one channel to two channel
    """
    logit = fluid.layers.transpose(logit, [0, 2, 3, 1])
    logit = fluid.layers.sigmoid(logit)
    logit_back = 1 - logit
    logit = fluid.layers.concat([logit_back, logit], axis=-1)
    logit = fluid.layers.transpose(logit, [0, 3, 1, 2])
    return logit


def export_preprocess(image):
    """导出模型的预处理流程"""

    image = fluid.layers.transpose(image, [0, 3, 1, 2])
    origin_shape = fluid.layers.shape(image)[-2:]

    # 不同AUG_METHOD方法的resize
    if cfg.AUG.AUG_METHOD == 'unpadding':
        h_fix = cfg.AUG.FIX_RESIZE_SIZE[1]
        w_fix = cfg.AUG.FIX_RESIZE_SIZE[0]
        image = fluid.layers.resize_bilinear(
            image, out_shape=[h_fix, w_fix], align_corners=False, align_mode=0)
    elif cfg.AUG.AUG_METHOD == 'rangescaling':
        size = cfg.AUG.INF_RESIZE_VALUE
        value = fluid.layers.reduce_max(origin_shape)
        scale = float(size) / value.astype('float32')
        image = fluid.layers.resize_bilinear(
            image, scale=scale, align_corners=False, align_mode=0)

    # 存储resize后图像shape
    valid_shape = fluid.layers.shape(image)[-2:]

    # padding到eval_crop_size大小
    width = cfg.EVAL_CROP_SIZE[0]
    height = cfg.EVAL_CROP_SIZE[1]
    pad_target = fluid.layers.assign(
        np.array([height, width]).astype('float32'))
    up = fluid.layers.assign(np.array([0]).astype('float32'))
    down = pad_target[0] - valid_shape[0]
    left = up
    right = pad_target[1] - valid_shape[1]
    paddings = fluid.layers.concat([up, down, left, right])
    paddings = fluid.layers.cast(paddings, 'int32')
    image = fluid.layers.pad2d(image, paddings=paddings, pad_value=127.5)

    # normalize
    mean = np.array(cfg.MEAN).reshape(1, len(cfg.MEAN), 1, 1)
    mean = fluid.layers.assign(mean.astype('float32'))
    std = np.array(cfg.STD).reshape(1, len(cfg.STD), 1, 1)
    std = fluid.layers.assign(std.astype('float32'))
    image = (image / 255 - mean) / std
    # 使后面的网络能通过类似image.shape获取特征图的shape
    image = fluid.layers.reshape(
        image, shape=[-1, cfg.DATASET.DATA_DIM, height, width])
    return image, valid_shape, origin_shape


def build_model(main_prog, start_prog, phase=ModelPhase.TRAIN, arch=None):
    if not ModelPhase.is_valid_phase(phase):
        raise ValueError("ModelPhase {} is not valid!".format(phase))
    if ModelPhase.is_train(phase):
        width = cfg.TRAIN_CROP_SIZE[0]
        height = cfg.TRAIN_CROP_SIZE[1]
    else:
        width = cfg.EVAL_CROP_SIZE[0]
        height = cfg.EVAL_CROP_SIZE[1]

157 158
    image_shape = [-1, cfg.DATASET.DATA_DIM, height, width]
    grt_shape = [-1, 1, height, width]
L
LielinJiang 已提交
159 160 161 162 163 164 165
    class_num = cfg.DATASET.NUM_CLASSES

    with fluid.program_guard(main_prog, start_prog):
        with fluid.unique_name.guard():
            # 在导出模型的时候,增加图像标准化预处理,减小预测部署时图像的处理流程
            # 预测部署时只须对输入图像增加batch_size维度即可
            if ModelPhase.is_predict(phase):
166
                origin_image = fluid.data(
L
LielinJiang 已提交
167 168
                    name='image',
                    shape=[-1, -1, -1, cfg.DATASET.DATA_DIM],
169
                    dtype='float32')
L
LielinJiang 已提交
170 171 172 173
                image, valid_shape, origin_shape = export_preprocess(
                    origin_image)

            else:
174
                image = fluid.data(
L
LielinJiang 已提交
175
                    name='image', shape=image_shape, dtype='float32')
176 177
            label = fluid.data(name='label', shape=grt_shape, dtype='int32')
            mask = fluid.data(name='mask', shape=grt_shape, dtype='int32')
L
LielinJiang 已提交
178

179
            # use DataLoader.from_generator when doing traning and evaluation
L
LielinJiang 已提交
180
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
181
                data_loader = fluid.io.DataLoader.from_generator(
L
LielinJiang 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
                    feed_list=[image, label, mask],
                    capacity=cfg.DATALOADER.BUF_SIZE,
                    iterable=False,
                    use_double_buffer=True)

            loss_type = cfg.SOLVER.LOSS
            if not isinstance(loss_type, list):
                loss_type = list(loss_type)

            # dice_loss或bce_loss只适用两类分割中
            if class_num > 2 and (("dice_loss" in loss_type) or
                                  ("bce_loss" in loss_type)):
                raise Exception(
                    "dice loss and bce loss is only applicable to binary classfication"
                )

            # 在两类分割情况下,当loss函数选择dice_loss或bce_loss的时候,最后logit输出通道数设置为1
            if ("dice_loss" in loss_type) or ("bce_loss" in loss_type):
                class_num = 1
                if "softmax_loss" in loss_type:
                    raise Exception(
                        "softmax loss can not combine with dice loss or bce loss"
                    )
            logits = seg_model(image, class_num, arch)

            # 根据选择的loss函数计算相应的损失函数
            if ModelPhase.is_train(phase) or ModelPhase.is_eval(phase):
                loss_valid = False
                avg_loss_list = []
                valid_loss = []
                if "softmax_loss" in loss_type:
                    weight = cfg.SOLVER.CROSS_ENTROPY_WEIGHT
                    avg_loss_list.append(
215 216
                        multi_softmax_with_loss(logits, label, mask, class_num,
                                                weight))
L
LielinJiang 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                    loss_valid = True
                    valid_loss.append("softmax_loss")
                if "dice_loss" in loss_type:
                    avg_loss_list.append(multi_dice_loss(logits, label, mask))
                    loss_valid = True
                    valid_loss.append("dice_loss")
                if "bce_loss" in loss_type:
                    avg_loss_list.append(multi_bce_loss(logits, label, mask))
                    loss_valid = True
                    valid_loss.append("bce_loss")
                if not loss_valid:
                    raise Exception(
                        "SOLVER.LOSS: {} is set wrong. it should "
                        "include one of (softmax_loss, bce_loss, dice_loss) at least"
                        " example: ['softmax_loss'], ['dice_loss'], ['bce_loss', 'dice_loss']"
                        .format(cfg.SOLVER.LOSS))

                invalid_loss = [x for x in loss_type if x not in valid_loss]
                if len(invalid_loss) > 0:
                    print(
                        "Warning: the loss {} you set is invalid. it will not be included in loss computed."
                        .format(invalid_loss))

                avg_loss = 0
                for i in range(0, len(avg_loss_list)):
                    avg_loss += avg_loss_list[i]

            #get pred result in original size
            if isinstance(logits, tuple):
                logit = logits[0]
            else:
                logit = logits

            if logit.shape[2:] != label.shape[2:]:
                logit = fluid.layers.resize_bilinear(logit, label.shape[2:])

            # return image input and logit output for inference graph prune
            if ModelPhase.is_predict(phase):
                # 两类分割中,使用dice_loss或bce_loss返回的logit为单通道,进行到两通道的变换
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)

                # 获取有效部分
                logit = fluid.layers.slice(
                    logit, axes=[2, 3], starts=[0, 0], ends=valid_shape)

                logit = fluid.layers.resize_bilinear(
                    logit,
                    out_shape=origin_shape,
                    align_corners=False,
                    align_mode=0)
                logit = fluid.layers.argmax(logit, axis=1)
                return origin_image, logit

            if class_num == 1:
                out = sigmoid_to_softmax(logit)
                out = fluid.layers.transpose(out, [0, 2, 3, 1])
            else:
                out = fluid.layers.transpose(logit, [0, 2, 3, 1])

            pred = fluid.layers.argmax(out, axis=3)
            pred = fluid.layers.unsqueeze(pred, axes=[3])
            if ModelPhase.is_visual(phase):
                if class_num == 1:
                    logit = sigmoid_to_softmax(logit)
                else:
                    logit = softmax(logit)
                return pred, logit

            if ModelPhase.is_eval(phase):
289
                return data_loader, avg_loss, pred, label, mask
L
LielinJiang 已提交
290 291 292 293

            if ModelPhase.is_train(phase):
                optimizer = solver.Solver(main_prog, start_prog)
                decayed_lr = optimizer.optimise(avg_loss)
294
                return data_loader, avg_loss, decayed_lr, pred, label, mask
L
LielinJiang 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312


def to_int(string, dest="I"):
    return struct.unpack(dest, string)[0]


def parse_shape_from_file(filename):
    with open(filename, "rb") as file:
        version = file.read(4)
        lod_level = to_int(file.read(8), dest="Q")
        for i in range(lod_level):
            _size = to_int(file.read(8), dest="Q")
            _ = file.read(_size)
        version = file.read(4)
        tensor_desc_size = to_int(file.read(4))
        tensor_desc = VarType.TensorDesc()
        tensor_desc.ParseFromString(file.read(tensor_desc_size))
    return tuple(tensor_desc.dims)