utils.py 10.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import time
import os
import os.path as osp
import numpy as np
import six
import yaml
import math
W
wuyefeilin 已提交
23
import cv2
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
from . import logging


def seconds_to_hms(seconds):
    h = math.floor(seconds / 3600)
    m = math.floor((seconds - h * 3600) / 60)
    s = int(seconds - h * 3600 - m * 60)
    hms_str = "{}:{}:{}".format(h, m, s)
    return hms_str


def setting_environ_flags():
    if 'FLAGS_eager_delete_tensor_gb' not in os.environ:
        os.environ['FLAGS_eager_delete_tensor_gb'] = '0.0'
    if 'FLAGS_allocator_strategy' not in os.environ:
        os.environ['FLAGS_allocator_strategy'] = 'auto_growth'
    if "CUDA_VISIBLE_DEVICES" in os.environ:
        if os.environ["CUDA_VISIBLE_DEVICES"].count("-1") > 0:
            os.environ["CUDA_VISIBLE_DEVICES"] = ""


def get_environ_info():
    setting_environ_flags()
    import paddle.fluid as fluid
    info = dict()
    info['place'] = 'cpu'
    info['num'] = int(os.environ.get('CPU_NUM', 1))
    if os.environ.get('CUDA_VISIBLE_DEVICES', None) != "":
        if hasattr(fluid.core, 'get_cuda_device_count'):
            gpu_num = 0
            try:
                gpu_num = fluid.core.get_cuda_device_count()
            except:
                os.environ['CUDA_VISIBLE_DEVICES'] = ''
                pass
            if gpu_num > 0:
                info['place'] = 'cuda'
                info['num'] = fluid.core.get_cuda_device_count()
    return info


def parse_param_file(param_file, return_shape=True):
    from paddle.fluid.proto.framework_pb2 import VarType
    f = open(param_file, 'rb')
    version = np.fromstring(f.read(4), dtype='int32')
    lod_level = np.fromstring(f.read(8), dtype='int64')
    for i in range(int(lod_level)):
        _size = np.fromstring(f.read(8), dtype='int64')
        _ = f.read(_size)
    version = np.fromstring(f.read(4), dtype='int32')
    tensor_desc = VarType.TensorDesc()
    tensor_desc_size = np.fromstring(f.read(4), dtype='int32')
    tensor_desc.ParseFromString(f.read(int(tensor_desc_size)))
    tensor_shape = tuple(tensor_desc.dims)
    if return_shape:
        f.close()
        return tuple(tensor_desc.dims)
    if tensor_desc.data_type != 5:
        raise Exception(
            "Unexpected data type while parse {}".format(param_file))
    data_size = 4
    for i in range(len(tensor_shape)):
        data_size *= tensor_shape[i]
    weight = np.fromstring(f.read(data_size), dtype='float32')
    f.close()
    return np.reshape(weight, tensor_shape)


def fuse_bn_weights(exe, main_prog, weights_dir):
    import paddle.fluid as fluid
    logging.info("Try to fuse weights of batch_norm...")
    bn_vars = list()
    for block in main_prog.blocks:
        ops = list(block.ops)
        for op in ops:
            if op.type == 'affine_channel':
                scale_name = op.input('Scale')[0]
                bias_name = op.input('Bias')[0]
                prefix = scale_name[:-5]
                mean_name = prefix + 'mean'
                variance_name = prefix + 'variance'
                if not osp.exists(osp.join(
                        weights_dir, mean_name)) or not osp.exists(
                            osp.join(weights_dir, variance_name)):
                    logging.info(
                        "There's no batch_norm weight found to fuse, skip fuse_bn."
                    )
                    return

                bias = block.var(bias_name)
                pretrained_shape = parse_param_file(
                    osp.join(weights_dir, bias_name))
                actual_shape = tuple(bias.shape)
                if pretrained_shape != actual_shape:
                    continue
                bn_vars.append(
                    [scale_name, bias_name, mean_name, variance_name])
    eps = 1e-5
    for names in bn_vars:
        scale_name, bias_name, mean_name, variance_name = names
        scale = parse_param_file(
            osp.join(weights_dir, scale_name), return_shape=False)
        bias = parse_param_file(
            osp.join(weights_dir, bias_name), return_shape=False)
        mean = parse_param_file(
            osp.join(weights_dir, mean_name), return_shape=False)
        variance = parse_param_file(
            osp.join(weights_dir, variance_name), return_shape=False)
        bn_std = np.sqrt(np.add(variance, eps))
        new_scale = np.float32(np.divide(scale, bn_std))
        new_bias = bias - mean * new_scale
        scale_tensor = fluid.global_scope().find_var(scale_name).get_tensor()
        bias_tensor = fluid.global_scope().find_var(bias_name).get_tensor()
        scale_tensor.set(new_scale, exe.place)
        bias_tensor.set(new_bias, exe.place)
    if len(bn_vars) == 0:
        logging.info(
            "There's no batch_norm weight found to fuse, skip fuse_bn.")
    else:
        logging.info("There's {} batch_norm ops been fused.".format(
            len(bn_vars)))


def load_pdparams(exe, main_prog, model_dir):
    import paddle.fluid as fluid
    from paddle.fluid.proto.framework_pb2 import VarType
    from paddle.fluid.framework import Program

    vars_to_load = list()
    import pickle
    with open(osp.join(model_dir, 'model.pdparams'), 'rb') as f:
        params_dict = pickle.load(f) if six.PY2 else pickle.load(
            f, encoding='latin1')
    unused_vars = list()
    for var in main_prog.list_vars():
        if not isinstance(var, fluid.framework.Parameter):
            continue
        if var.name not in params_dict:
162
            raise Exception("{} is not in saved model".format(var.name))
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
        if var.shape != params_dict[var.name].shape:
            unused_vars.append(var.name)
            logging.warning(
                "[SKIP] Shape of pretrained weight {} doesn't match.(Pretrained: {}, Actual: {})"
                .format(var.name, params_dict[var.name].shape, var.shape))
            continue
        vars_to_load.append(var)
        logging.debug("Weight {} will be load".format(var.name))
    for var_name in unused_vars:
        del params_dict[var_name]
    fluid.io.set_program_state(main_prog, params_dict)

    if len(vars_to_load) == 0:
        logging.warning(
            "There is no pretrain weights loaded, maybe you should check you pretrain model!"
        )
    else:
        logging.info("There are {} varaibles in {} are loaded.".format(
            len(vars_to_load), model_dir))


184
def load_pretrained_weights(exe, main_prog, weights_dir, fuse_bn=False):
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
    if not osp.exists(weights_dir):
        raise Exception("Path {} not exists.".format(weights_dir))
    if osp.exists(osp.join(weights_dir, "model.pdparams")):
        return load_pdparams(exe, main_prog, weights_dir)
    import paddle.fluid as fluid
    vars_to_load = list()
    for var in main_prog.list_vars():
        if not isinstance(var, fluid.framework.Parameter):
            continue
        if not osp.exists(osp.join(weights_dir, var.name)):
            logging.debug("[SKIP] Pretrained weight {}/{} doesn't exist".format(
                weights_dir, var.name))
            continue
        pretrained_shape = parse_param_file(osp.join(weights_dir, var.name))
        actual_shape = tuple(var.shape)
        if pretrained_shape != actual_shape:
            logging.warning(
                "[SKIP] Shape of pretrained weight {}/{} doesn't match.(Pretrained: {}, Actual: {})"
                .format(weights_dir, var.name, pretrained_shape, actual_shape))
            continue
        vars_to_load.append(var)
        logging.debug("Weight {} will be load".format(var.name))

W
wuyefeilin 已提交
208 209 210
    params_dict = fluid.io.load_program_state(
        weights_dir, var_list=vars_to_load)
    fluid.io.set_program_state(main_prog, params_dict)
211 212 213 214 215 216 217 218 219
    if len(vars_to_load) == 0:
        logging.warning(
            "There is no pretrain weights loaded, maybe you should check you pretrain model!"
        )
    else:
        logging.info("There are {} varaibles in {} are loaded.".format(
            len(vars_to_load), weights_dir))
    if fuse_bn:
        fuse_bn_weights(exe, main_prog, weights_dir)
W
wuyefeilin 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274


def visualize(image, result, save_dir=None, weight=0.6):
    """
    Convert segment result to color image, and save added image.
    Args:
        image: the path of origin image
        result: the predict result of image
        save_dir: the directory for saving visual image
        weight: the image weight of visual image, and the result weight is (1 - weight)
    """
    label_map = result['label_map']
    color_map = get_color_map_list(256)
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(label_map, color_map[:, 0])
    c2 = cv2.LUT(label_map, color_map[:, 1])
    c3 = cv2.LUT(label_map, color_map[:, 2])
    pseudo_img = np.dstack((c1, c2, c3))

    im = cv2.imread(image)
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_name = os.path.split(image)[-1]
        out_path = os.path.join(save_dir, image_name)
        cv2.imwrite(out_path, vis_result)
    else:
        return vis_result


def get_color_map_list(num_classes):
    """ Returns the color map for visualizing the segmentation mask,
        which can support arbitrary number of classes.
    Args:
        num_classes: Number of classes
    Returns:
        The color map
    """
    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = color_map[1:]
    return color_map