humanseg_postprocess.py 4.1 KB
Newer Older
1 2
import numpy as np
import cv2
W
wuyefeilin 已提交
3 4
import os

5

W
wuyefeilin 已提交
6 7 8
def get_round(data):
    round = 0.5 if data >= 0 else -0.5
    return (int)(data + round)
9

W
wuyefeilin 已提交
10 11

def human_seg_tracking(pre_gray, cur_gray, prev_cfd, dl_weights, disflow):
12 13 14 15 16 17 18 19 20 21 22 23
    """计算光流跟踪匹配点和光流图
    输入参数:
        pre_gray: 上一帧灰度图
        cur_gray: 当前帧灰度图
        prev_cfd: 上一帧光流图
        dl_weights: 融合权重图
        disflow: 光流数据结构
    返回值:
        is_track: 光流点跟踪二值图,即是否具有光流点匹配
        track_cfd: 光流跟踪图
    """
    check_thres = 8
W
wuyefeilin 已提交
24
    h, w = pre_gray.shape[:2]
25 26 27 28
    track_cfd = np.zeros_like(prev_cfd)
    is_track = np.zeros_like(pre_gray)
    flow_fw = disflow.calc(pre_gray, cur_gray, None)
    flow_bw = disflow.calc(cur_gray, pre_gray, None)
W
wuyefeilin 已提交
29 30 31
    for r in range(h):
        for c in range(w):
            fxy_fw = flow_fw[r, c]
32
            dx_fw = get_round(fxy_fw[0])
W
wuyefeilin 已提交
33
            cur_x = dx_fw + c
34
            dy_fw = get_round(fxy_fw[1])
W
wuyefeilin 已提交
35 36
            cur_y = dy_fw + r
            if cur_x < 0 or cur_x >= w or cur_y < 0 or cur_y >= h:
37 38 39 40
                continue
            fxy_bw = flow_bw[cur_y, cur_x]
            dx_bw = get_round(fxy_bw[0])
            dy_bw = get_round(fxy_bw[1])
W
wuyefeilin 已提交
41 42
            if ((dy_fw + dy_bw) * (dy_fw + dy_bw) +
                (dx_fw + dx_bw) * (dx_fw + dx_bw)) >= check_thres:
43 44 45 46 47
                continue
            if abs(dy_fw) <= 0 and abs(dx_fw) <= 0 and abs(dy_bw) <= 0 and abs(
                    dx_bw) <= 0:
                dl_weights[cur_y, cur_x] = 0.05
            is_track[cur_y, cur_x] = 1
W
wuyefeilin 已提交
48
            track_cfd[cur_y, cur_x] = prev_cfd[r, c]
49 50 51
    return track_cfd, is_track, dl_weights


W
wuyefeilin 已提交
52
def human_seg_track_fuse(track_cfd, dl_cfd, dl_weights, is_track):
53 54 55 56 57 58
    """光流追踪图和人像分割结构融合
    输入参数:
        track_cfd: 光流追踪图
        dl_cfd: 当前帧分割结果
        dl_weights: 融合权重图
        is_track: 光流点匹配二值图
W
wuyefeilin 已提交
59
    返回
60 61
        cur_cfd: 光流跟踪图和人像分割结果融合图
    """
W
wuyefeilin 已提交
62
    fusion_cfd = dl_cfd.copy()
63
    idxs = np.where(is_track > 0)
W
wuyefeilin 已提交
64
    for i in range(len(idxs[0])):
65 66 67
        x, y = idxs[0][i], idxs[1][i]
        dl_score = dl_cfd[x, y]
        track_score = track_cfd[x, y]
W
wuyefeilin 已提交
68 69
        fusion_cfd[x, y] = dl_weights[x, y] * dl_score + (
            1 - dl_weights[x, y]) * track_score
70 71
        if dl_score > 0.9 or dl_score < 0.1:
            if dl_weights[x, y] < 0.1:
W
wuyefeilin 已提交
72
                fusion_cfd[x, y] = 0.3 * dl_score + 0.7 * track_score
73
            else:
W
wuyefeilin 已提交
74
                fusion_cfd[x, y] = 0.4 * dl_score + 0.6 * track_score
75
        else:
W
wuyefeilin 已提交
76
            fusion_cfd[x, y] = dl_weights[x, y] * dl_score + (
77
                1 - dl_weights[x, y]) * track_score
W
wuyefeilin 已提交
78
    return fusion_cfd
79 80


W
wuyefeilin 已提交
81
def postprocess(cur_gray, scoremap, prev_gray, pre_cfd, disflow, is_init):
82 83 84
    """光流优化
    Args:
        cur_gray : 当前帧灰度图
W
wuyefeilin 已提交
85 86
        pre_gray : 前一帧灰度图
        pre_cfd  :前一帧融合结果
87
        scoremap : 当前帧分割结果
W
wuyefeilin 已提交
88
        difflow  : 光流
89 90
        is_init : 是否第一帧
    Returns:
W
wuyefeilin 已提交
91
        fusion_cfd : 光流追踪图和预测结果融合图
92 93 94
    """
    height, width = scoremap.shape[0], scoremap.shape[1]
    disflow = cv2.DISOpticalFlow_create(cv2.DISOPTICAL_FLOW_PRESET_ULTRAFAST)
W
wuyefeilin 已提交
95
    h, w = scoremap.shape
96
    cur_cfd = scoremap.copy()
W
wuyefeilin 已提交
97

98 99
    if is_init:
        is_init = False
W
wuyefeilin 已提交
100
        if h <= 64 or w <= 64:
101
            disflow.setFinestScale(1)
W
wuyefeilin 已提交
102
        elif h <= 160 or w <= 160:
103 104 105 106 107
            disflow.setFinestScale(2)
        else:
            disflow.setFinestScale(3)
        fusion_cfd = cur_cfd
    else:
W
wuyefeilin 已提交
108 109 110 111 112
        weights = np.ones((w, h), np.float32) * 0.3
        track_cfd, is_track, weights = human_seg_tracking(
            prev_gray, cur_gray, pre_cfd, weights, disflow)
        fusion_cfd = human_seg_track_fuse(track_cfd, cur_cfd, weights, is_track)

113
    fusion_cfd = cv2.GaussianBlur(fusion_cfd, (3, 3), 0)
W
wuyefeilin 已提交
114

115 116 117
    return fusion_cfd


W
wuyefeilin 已提交
118 119 120 121 122
def threshold_mask(img, thresh_bg, thresh_fg):
    dst = (img / 255.0 - thresh_bg) / (thresh_fg - thresh_bg)
    dst[np.where(dst > 1)] = 1
    dst[np.where(dst < 0)] = 0
    return dst.astype(np.float32)